BMC Infectious Diseases | |
4Flu - an individual based simulation tool to study the effects of quadrivalent vaccination on seasonal influenza in Germany | |
Ruprecht Schmidt-Ott6  Markus Knuf2  Bernd Salzberger5  Helmut Uphoff4  Johannes Hain3  Markus Schwehm7  Martin Eichner1  | |
[1] Epimos GmbH, Uhlandstr. 3, 72144 Dusslingen, Germany;Dr. Horst Schmidt Klinik, Klinik für Kinder und Jugendliche, Ludwig-Erhard-Str. 100, 65199 Wiesbaden, Germany;GlaxoSmithKline GmbH & Co. KG, Prinzregentenplatz 9, 81675 München, Germany;Hessisches Landesprüfungs- und Untersuchungsamt im Gesundheitswesen, Zentrum für Gesundheitsschutz, Wolframstr. 33, 35683 Dillenburg, Germany;Klinik f. Innere Medizin, Universitätsklinikum Regensburg, 93042 Regensburg, Germany;GlaxoSmithKline Vaccines, Wavre, Belgium;ExploSYS GmbH, Otto-Hahn-Weg 6, 70771 Leinfelden-Echterdingen, Germany | |
关键词: Mathematical model; Simulation; Vaccination; Influenza; | |
Others : 1127449 DOI : 10.1186/1471-2334-14-365 |
|
received in 2013-12-04, accepted in 2014-06-03, 发布年份 2014 | |
【 摘 要 】
Background
Influenza vaccines contain Influenza A and B antigens and are adjusted annually to match the characteristics of circulating viruses. In Germany, Influenza B viruses belonged to the B/Yamagata lineage, but since 2001, the antigenically distinct B/Victoria lineage has been co-circulating. Trivalent influenza vaccines (TIV) contain antigens of the two A subtypes A(H3N2) and A(H1N1), yet of only one B lineage, resulting in frequent vaccine mismatches. Since 2012, the WHO has been recommending vaccine strains from both B lineages, paving the way for quadrivalent influenza vaccines (QIV).
Methods
Using an individual-based simulation tool, we simulate the concomitant transmission of four influenza strains, and compare the effects of TIV and QIV on the infection incidence. Individuals are connected in a dynamically evolving age-dependent contact network based on the POLYMOD matrix; their age-distribution reproduces German demographic data and predictions. The model considers maternal protection, boosting of existing immunity, loss of immunity, and cross-immunizing events between the B lineages. Calibration to the observed annual infection incidence of 10.6% among young adults yielded a basic reproduction number of 1.575. Vaccinations are performed annually in October and November, whereby coverage depends on the vaccinees’ age, their risk status and previous vaccination status. New drift variants are introduced at random time points, leading to a sudden loss of protective immunity for part of the population and occasionally to reduced vaccine efficacy. Simulations run for 50 years, the first 30 of which are used for initialization. During the final 20 years, individuals receive TIV or QIV, using a mirrored simulation approach.
Results
Using QIV, the mean annual infection incidence can be reduced from 8,943,000 to 8,548,000, i.e. by 395,000 infections, preventing 11.2% of all Influenza B infections which still occur with TIV (95% CI: 10.7-11.8%). Using a lower B lineage cross protection than the baseline 60%, the number of Influenza B infections increases and the number additionally prevented by QIV can be 5.5 times as high.
Conclusions
Vaccination with TIV substantially reduces the Influenza incidence compared to no vaccination. Depending on the assumed degree of B lineage cross protection, QIV further reduces Influenza B incidence by 11-33%.
【 授权许可】
2014 Eichner et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150220161732709.pdf | 1903KB | download | |
Figure 9. | 27KB | Image | download |
Figure 8. | 21KB | Image | download |
Figure 7. | 22KB | Image | download |
Figure 6. | 23KB | Image | download |
Figure 5. | 20KB | Image | download |
Figure 1. | 21KB | Image | download |
Figure 3. | 40KB | Image | download |
Figure 2. | 142KB | Image | download |
Figure 1. | 20KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 1.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Rota PA, Wallis TR, Harmon MW, Rota JS, Kendal AP, Nerome K: Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 1990, 175:59-68.
- [2]Kanegae Y, Sugita S, Endo A, Ishida M, Senya S, Osako K, Nerome K, Oya A: Evolutionary pattern of the hemagglutinin gene of influenza B viruses isolated in Japan: cocirculating lineages in the same epidemic season. J Virol 1990, 64:2860-2865.
- [3]Hay AJ, Gregory V, Douglas AR, Lin YP: The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 2001, 356:1861-1870.
- [4]Chen R, Holmes EC: The evolutionary dynamics of human influenza B virus. J Mol Evol 2008, 66:655-663.
- [5]McCullers JA, Saito T, Iverson AR: Multiple genotypes of influenza B virus circulated between 1979 and 2003. J Virol 2004, 78:12817-12828.
- [6]Ambrose CS, Levin MJ: The rationale for quadrivalent influenza vaccines. Hum Vaccin Immunother 2012, 8:81-88.
- [7]Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, Fukuda K: Influenza-associated hospitalizations in the United States. JAMA 2004, 292:1333-1340.
- [8]Irving SA, Patel DC, Kieke BA, Donahue JG, Vandermause MF, Shay DK, Belongia EA: Comparison of clinical features and outcomes of medically attended influenza A and influenza B in a defined population over four seasons: 2004–2005 through 2007–2008. Influenza Other Respi Viruses 2012, 6:37-43.
- [9]World Health Organization: Vaccines against influenza WHO position paper - November 2012. Wkly Epidemiol Rec 2012, 87:461-476.
- [10]Tricco AC, Chit A, Soobiah C, Hallett D, Meier G, Chen MH, Tashkandi M, Bauch CT, Loeb M: Comparing influenza vaccine efficacy against mismatched and matched strains: a systematic review and meta-analysis. BMC Med 2013, 11:153.
- [11]Centers for Disease Control and Prevention: Past weekly surveillance reports 2013. [http://www.cdc.gov/flu/weekly/pastreports.htm webcite]
- [12]World Health Organization: Recommended composition of influenza virus vaccines for use in the 2013 southern hemisphere influenza season. 2012. [http://www.who.int/influenza/vaccines/virus/recommendations/2013_south/en/index.html webcite]
- [13]McDonald SA, van Lier A, Plass D, Kretzschmar ME: The impact of demographic change on the estimated future burden of infectious diseases: examples from hepatitis B and seasonal influenza in the Netherlands. BMC Public Health 2012, 12:1046.
- [14]Alexander ME, Kobes R: Effects of vaccination and population structure on influenza epidemic spread in the presence of two circulating strains. BMC Public Health 2011, 11(Suppl 1):S8.
- [15]Edlund S, Kaufman J, Lessler J, Douglas J, Bromberg M, Kaufman Z, Bassal R, Chodick G, Marom R, Shalev V, Mesika Y, Ram R, Leventhal A: Comparing three basic models for seasonal influenza. Epidemics 2011, 3:135-142.
- [16]Pitman RJ, Nagy LD, Sculpher MJ: Cost-effectiveness of childhood influenza vaccination in England and Wales: results from a dynamic transmission model. Vaccine 2012, 31:927-942.
- [17]Eichner M, Schwehm M, Duerr HP, Brockmann SO: The influenza pandemic preparedness planning tool InfluSim. BMC Infect Dis 2007, 7:17.
- [18]Chao DL, Halloran ME, Obenchain VJ, Longini IM Jr: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput Biol 2010, 6:e1000656.
- [19]Halloran ME, Ferguson NM, Eubank S, Longini IM Jr, Cummings DA, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, Wagener D, Beckman R, Kadau K, Barrett C, Macken CA, Burke DS, Cooley P: Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci U S A 2008, 105:4639-4644.
- [20]Kenah E, Chao DL, Matrajt L, Halloran ME, Longini IM Jr: The global transmission and control of influenza. PLoS One 2011, 6:e19515.
- [21]Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med 2007, 4:e13.
- [22]Shaman J, Karspeck A: Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci U S A 2012, 109:20425-20430.
- [23]Nishiura H: Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009). Biomed Eng Online 2011, 10:15.
- [24]Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Goncalves B, Perra N, Colizza V, Vespignani A: Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med 2012, 10:165.
- [25]Elveback LR, Fox JP, Ackerman E, Langworthy A, Boyd M, Gatewood L: An influenza simulation model for immunization studies. Am J Epidemiol 1976, 103:152-165.
- [26]Minayev P, Ferguson N: Improving the realism of deterministic multi-strain models: implications for modelling influenza A. J R Soc Interface 2009, 6:509-518.
- [27]Deutsches Statistisches Bundesamt 2009. [https://www.destatis.de/DE/Startseite.html webcite]
- [28]Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinka M, Edmunds WJ: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 2008, 5:e74.
- [29]Biere B, Schweiger B: Molecular analyses of human influenza viruses. Circulation of new variants since 1995/96. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2008, 51:1050-1060.
- [30]Britton T, Lindenstrand D: Inhomogeneous epidemics on weighted networks. Math Biosci 2012, 24:124-131.
- [31]Vynnycky E, Pitman R, Siddiqui R, Gay N, Edmunds WJ: Estimating the impact of childhood influenza vaccination programmes in England and Wales. Vaccine 2008, 26:5321-5330.
- [32]Haas W: Influenza: Prävention, Diagnostik, Therapie und öffentliche Gesundheit. Munich, Germany: Elsevier GmbH; 2009.
- [33]Zaman K, Roy E, Arifeen SE, Rahman M, Raqib R, Wilson E, Omer SB, Shahid NS, Breiman RF, Steinhoff MC: Effectiveness of maternal influenza immunization in mothers and infants. N Eng J Med 2008, 359:1555-1564.
- [34]Poehling KA, Szilagyi PG, Staat MA, Snively BM, Payne DC, Bridges CB, Chu SY, Light LS, Prill MM, Finelli L, Griffin MR, Edwards KM, New Vaccine Surveillance Network: Impact of maternal immunization on influenza hospitalizations in infants. Am J Obstetr Gynecol 2011, 204:S141-S148.
- [35]Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA: Mapping the antigenic and genetic evolution of influenza virus. Science 2004, 305:371-376.
- [36]Park AW, Daly JM, Lewis NS, Smith DJ, Wood JL, Grenfell BT: Quantifying the impact of immune escape on transmission dynamics of influenza. Science 2009, 326:726-728.
- [37]Arbeitsgemeinschaft für Influenza: Bericht zur Epidemiologie der Influenza in Deutschland. Saison 2011/12; 2012. [http://www.rki.de/DE/Content/InfAZ/I/Influenza/PK_AGI_2012_AGI-Saisonbericht_11_12.html webcite]
- [38]Blank PR, Schwenkglenks M, Szucs TD: Disparities in influenza vaccination coverage rates by target group in five European countries: trends over seven consecutive seasons. Infection 2009, 37:390-400.
- [39]Jefferson T, Di Pietrantonj C, Rivetti A, Bawazeer GA, Al-Ansary LA, Ferroni E: Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev 2010., 7CD001269
- [40]Jefferson T, Rivetti A, Di Pietrantonj C, Demicheli V, Ferroni E: Vaccines for preventing influenza in healthy children. Cochrane Database Syst Rev 2012., 8CD004879
- [41]Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, Thomas RE: Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 2010, 7:CD004876.
- [42]Arbeitsgemeinschaft für Influenza: Saisonberichte. 2013. [http://influenza.rki.de/Saisonbericht.aspx webcite]
- [43]Robert Koch Institute: Influenzapandemieplan. [http://www.rki.de/DE/Content/InfAZ/I/Influenza/Influenzapandemieplan.html webcite]
- [44]Ruf B, Colberg K, Frick M, Preusche A: Immunogenicity and antibody persistence of FluarixTM vs. Fluad(R) vs. Inflexal VTM in the elderly. Lisbon, Portugal: Poster presented during the First International Conference on Influenza Vaccines for the World; 2004.
- [45]Williams CJ, Schweiger B, Diner G, Gerlach F, Haaman F, Krause G, Nienhaus A, Buchholz A: Seasonal influenza risk in hospital healthcare workers is more strongly associated with household than occupational exposures: results from a prospective cohort study in Berlin, Germany, 2006/07. BMC Infect Dis 2010, 10:8.
- [46]Chowell G, Miller MA, Viboud C: Seasonal influenza in the United States, France, and Australia: transmission and prospects for control. Epidemiol Infect 2008, 136:852-864.
- [47]Smieszek T, Balmer M, Hattendorf J, Axhausen KW, Zinsstag J, Scholz RW: Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model. BMC Infect Dis 2011, 11:115.
- [48]Lunelli A, Rizzo C, Puzelli S, Bella A, Montomoli E, Rota MC, Donatelli I, Pugliese A: Understanding the dynamics of seasonal influenza in Italy: incidence, transmissibility and population susceptibility in a 9-year period. Influenza Other Respi Viruses 2013, 7:286-295.
- [49]Boelle PY, Ansart S, Cori A, Valleron AJ: Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza Other Respi Viruses 2011, 5:306-316.
- [50]Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L, Potter G, Kenah E, Longini IM Jr: The transmissibility and control of pandemic influenza A (H1N1) virus. Science 2009, 326:729-733.
- [51]Tan X, Yuan L, Zhou J, Zheng Y, Yang F: Modeling the initial transmission dynamics of influenza A H1N1 in Guangdong Province, China. IJID Official Public Int Soc Infect Dis 2013, 17:e479-e484.
- [52]Marcelin G, Sandbulte MR, Webby RJ: Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines. Rev Med Virol 2012, 22:267-279.
- [53]Truscott J, Fraser C, Cauchemez S, Meeyai A, Hinsley W, Donnelly CA, Ghani A, Ferguson N: Essential epidemiological mechanisms underpinning the transmission dynamics of seasonal influenza. J R Soc Interface 2012, 9:304-312.
- [54]Dietz K: The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 1993, 2:23-41.
- [55]Goldstein E, Paur K, Fraser C, Kenah E, Wallinga J, Lipsitch M: Reproductive numbers, epidemic spread and control in a community of households. Math Biosci 2009, 221:11-25.
- [56]Roberts MG: Epidemic models with uncertainty in the reproduction number. J Mathematic Biol 2013, 66:1463-1474.
- [57]Centers for Disease Control and Prevention: Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP)--United States, 2012–13 influenza season. MMWR 2012, 61:613-618.
- [58]Centers for Disease Control and Prevention: Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recommend Rep/Centers Dis Control 2010, 59:1-62.
- [59]Langley JM, Carmona Martinez A, Chatterjee A, Halperin SA, McNeil S, Reisinger KS, Aggarwal N, Huang LM, Peng CT, Garcia-Sicilia J, Salamanca de la Cueva I, Cabanas F, Trevino-Garza C, Rodriguez-Weber MA, dela OM, Chandrasekaran V, Dewé W, Liu A, Innis BL, Jain VK: Immunogenicity and safety of an inactivated quadrivalent influenza vaccine candidate: a phase III randomized controlled trial in children. J Infect Dis 2013, 208:544-553.
- [60]Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron AJ: Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 2008, 167:775-785.
- [61]Claas EC, de Jong JC, Bartelds AI, Bijlsma K, Rothbarth P, de Groot R, Rimmelzwaan GF, Osterhaus AD: Influenza types and patient population. Lancet 1995, 346:180.
- [62]Eames KT, Tilston NL, Brooks-Pollock E, Edmunds WJ: Measured dynamic social contact patterns explain the spread of H1N1v influenza. PLoS Comput Biol 2012, 8:e1002425.
- [63]Towers S, Chowell G: Impact of weekday social contact patterns on the modeling of influenza transmission, and determination of the influenza latent period. J Theor Biol 2012, 312C:87-95.
- [64]Martin G, Marinescu MC, Singh DE, Carretero J: Leveraging social networks for understanding the evolution of epidemics. BMC Syst Biol 2011, 5(Suppl 3):S14.
- [65]Salathe M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH: A high-resolution human contact network for infectious disease transmission. Proc Natl Acad Sci U S A 2010, 107:22020-22025.
- [66]Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson NM, Swerdlow D, Pennsylvania H1N1 working group: Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc Natl Acad Sci U S A 2011, 108:2825-2830.
- [67]Glass LM, Glass RJ: Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health 2008, 8:61.
- [68]Riens B, Mangiapane S, Erhart M, Stillfried D: Analyse regionaler Unterschiede der Influenza-Impfraten in der Impfsaison 2007/2008. Versorgungsatlas 2011. [http://www.versorgungsatlas.de/themen/versorgungsprozesse/?tab=6&uid=2 webcite]
- [69]Tacken MA, Jansen B, Mulder J, Visscher S, Heijnen ML, Campbell SM, Braspenning JC: Pandemic influenza A(H1N1)pdm09 improves vaccination routine in subsequent years: a cohort study from 2009 to 2011. Vaccine 2013, 31:900-905.
- [70]Seo SH, Webster RG: Tumor necrosis factor alpha exerts powerful anti-influenza virus Effects in Lung Epithelial Cells. J Virology 2002, 76:1071-1076.
- [71]Haller O, Kochs G, Weber F: The interferon response circuit: induction and suppression by pathogenic viruses. Virology 2006, 344:119-130.
- [72]Gröndahl B, Ankermann T, von Bismarck P, Rockahr S, Kowalzik F, Gehring S, Meyer C, Knuf M, Puppe W: The 2009 pandemic influenza A(H1N1) coincides with changes in the epidemiology of other viral pathogens causing acute respiratory tract infections in children. Infection 2014, 42:303-308.
- [73]Goodman AG, Zeng H, Proll SC, Peng X, Cilloniz C, Carter VS, Korth MJ, Tumpey TM, Katze MG: The alpha/beta interferon receptor provides protection against influenza virus replication but is dispensable for inflammatory response signaling. J Virology 2010, 84:2027-2037.