期刊论文详细信息
BMC Systems Biology
Network and matrix analysis of the respiratory disease interactome
Michael Strong1  Gregory P Cosgrove3  Gargi Datta1  Benjamin Garcia2 
[1] Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;NICTA, Victoria Research Lab, Melbourne, Victoria 3010, Australia;Department of Medicine, National Jewish Health, Denver, CO 80206, USA
关键词: Lung disease;    Respiratory diseases;    Networks;    Interactome;   
Others  :  866635
DOI  :  10.1186/1752-0509-8-34
 received in 2013-11-25, accepted in 2014-03-10,  发布年份 2014
PDF
【 摘 要 】

Background

Although respiratory diseases exhibit in a wide array of clinical manifestations, certain respiratory diseases may share related genetic mechanisms or may be influenced by similar chemical stimuli. Here we explore and infer relationships among genes, diseases, and chemicals using network and matrix based clustering methods.

Results

In order to better understand and elucidate these shared genetic mechanisms and chemical relationships we analyzed a comprehensive collection of gene, disease, and chemical relationships pertinent to respiratory disease, using network and matrix based analysis approaches. Our methods enabled us to analyze relationships and make biological inferences among over 200 different respiratory and related diseases, involving thousands of gene-chemical-disease relationships.

Conclusions

The resulting networks provided insight into shared mechanisms of respiratory disease and in some cases suggest novel targets or repurposed drug strategies.

【 授权许可】

   
2014 Garcia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727080109209.pdf 10596KB PDF download
74KB Image download
51KB Image download
26KB Image download
183KB Image download
32KB Image download
116KB Image download
83KB Image download
52KB Image download
33KB Image download
【 图 表 】

【 参考文献 】
  • [1]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A: Human protein reference database–2009 update. Nucleic Acids Res 2009, 37:D767-D772.
  • [2]Baxevanis AD: Searching Online Mendelian Inheritance in Man (OMIM) for information for genetic loci involved in human disease. Current protocols in bioinformatics. 2003, 35(9.13):1--9. 13.15
  • [3]Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M: LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 2002, 30:402-404.
  • [4]Davis AP, King BL, Mockus S, Murphy CG, Saraceni-Richards C, Rosenstein M, Wiegers T, Mattingly CJ: The comparative toxicogenomics database: update 2011. Nucleic Acids Res 2011, 39:D1067-D1072.
  • [5]Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR: The connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313:1929-1935.
  • [6]Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G: A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002, 295:321-324.
  • [7]American Lung Association: State of lung disease in diverse communities. 2010.
  • [8]Kaneko Y, Yatagai Y, Yamada H, Iijima H, Masuko H, Sakamoto T, Hizawa N: The search for common pathways underlying asthma and COPD. Int J Chron Obstruct Pulmon Dis 2013, 8:65-78.
  • [9]Dockstader K, Nunley K, Karimpour-Fard A, Medway A, Nelson P, Port JD, Liggett SB, Bristow MR, Sucharov CC: Temporal analysis of mRNA and miRNA expression in transgenic mice overexpressing Arg- and Gly389 polymorphic variants of the beta1-adrenergic receptor. Physiol Genomics 2011, 43:1294-1306.
  • [10]Janjic V, Przulj N: Biological function through network topology: a survey of the human diseasome. Brief Funct Genomics 2012, 11:522-532.
  • [11]Islam MF, Hoque MM, Banik RS, Roy S, Sumi SS, Hassan FM, Tomal MT, Ullah A, Rahman KM: Comparative analysis of differential network modularity in tissue specific normal and cancer protein interaction networks. J Clin Bioinformatics 2013, 3:19. BioMed Central Full Text
  • [12]Barzel B, Barabasi AL: Network link prediction by global silencing of indirect correlations. Nat Biotechnol 2013, 31:720-725.
  • [13]Iorio F, Saez-Rodriguez J, Bernardo D: Network based elucidation of drug response: from modulators to targets. BMC Syst Biol 2013, 7:139. BioMed Central Full Text
  • [14]Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H: Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol 2012, 30:159-164.
  • [15]Yeh SH, Yeh HY, Soo VW: A network flow approach to predict drug targets from microarray data, disease genes and interactome network - case study on prostate cancer. J Clin Bioinformatics 2012, 2:1.
  • [16]Gulbahce N, Yan H, Dricot A, Padi M, Byrdsong D, Franchi R, Lee DS, Rozenblatt-Rosen O, Mar JC, Calderwood MA, Baldwin A, Zhao B, Santhanam B, Braun P, Simonis N, Huh KW, Hellner K, Grace M, Chen A, Rubio R, Marto JA, Christakis NA, Kieff E, Roth FP, Roecklein-Canfield J, Decaprio JA, Cusick ME, Quackenbush J, Hill DE, Münger K, Vidal M, Barabási AL: Viral perturbations of host networks reflect disease etiology. PLoS Comput Biol 2012, 8:e1002531.
  • [17]Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma 2003, 4:2. BioMed Central Full Text
  • [18]Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002, 30:1575-1584.
  • [19]Nguyen P, Srihari S, Leong H: Identifying conserved protein complexes between species by constructing interolog networks. BMC Bioinforma 2013, 14:S8.
  • [20]Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA: Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief Bioinform 2013, 15:195-211.
  • [21]Trinidad JC, Thalhammer A, Burlingame AL, Schoepfer R: Activity-dependent protein dynamics define interconnected cores of co-regulated postsynaptic proteins. Mol Cell Proteomics: MCP 2013, 12:29-41.
  • [22]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:431-432.
  • [23]Lee CG, Cho SJ, Kang MJ, Chapoval SP, Lee PJ, Noble PW, Yehualaeshet T, Lu B, Flavell RA, Milbrandt J, Homer RJ, Elias JA: Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 2004, 200:377-389.
  • [24]Wills-Karp M: Interleukin-13 in asthma pathogenesis. Immunol Rev 2004, 202:175-190.
  • [25]Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA: Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med 2012, 4:41. BioMed Central Full Text
  • [26]Becker JC, Muller-Tidow C, Stolte M, Fujimori T, Tidow N, Ilea AM, Brandts C, Tickenbrock L, Serve H, Berdel WE, Domschke W, Pohle T: Acetylsalicylic acid enhances antiproliferative effects of the EGFR inhibitor gefitinib in the absence of activating mutations in gastric cancer. Int J Oncol 2006, 29:615-623.
  • [27]Selvendiran K, Bratasz A, Tong L, Ignarro LJ, Kuppusamy P: NCX-4016, a nitro-derivative of aspirin, inhibits EGFR and STAT3 signaling and modulates Bcl-2 proteins in cisplatin-resistant human ovarian cancer cells and xenografts. Cell Cycle 2008, 7:81-88.
  • [28]Van Dyke AL, Cote ML, Prysak G, Claeys GB, Wenzlaff AS, Schwartz AG: Regular adult aspirin use decreases the risk of non-small cell lung cancer among women. Canc Epidemiol Biomarkers Prev: a Pub of the Am Assoc for Cancer Res, cosponsored by the Am Soc of Preventive Oncolgy 2008, 17:148-157.
  • [29]Braun DP, Bonomi PD, Taylor SG, Harris JE: Modification of the effects of cytotoxic chemotherapy on the immune responses of cancer patients with a nonsteroidal, antiinflammatory drug, piroxicam. A pilot study of the Eastern Cooperative Oncology Group. J Biol Response Modif 1987, 6:331-345.
  • [30]Palmerini E, Fan K, Yang K, Risio M, Edelmann W, Lipkin M, Biasco G: Piroxicam increases colon tumorigenesis and promotes apoptosis in Mlh1 +/− /Apc1638(N/+) mice. Anticancer Res 2007, 27:3807-3812.
  • [31]Vizza CD, Rocca GD, Roma AD, Iacoboni C, Pierconti F, Venuta F, Rendina E, Schmid G, Pietropaoli P, Fedele F: Acute hemodynamic effects of inhaled nitric oxide, dobutamine and a combination of the two in patients with mild to moderate secondary pulmonary hypertension. Critical Care 2001, 5:355-361. BioMed Central Full Text
  • [32]Zaman N, Li L, Jaramillo ML, Sun Z, Tibiche C, Banville M, Collins C, Trifiro M, Paliouras M, Nantel A, O'Connor-McCourt M, Wang E: Signaling network assessment of mutations and copy number variations predict breast cancer subtype-specific drug targets. Cell Rep 2013, 5:216-223.
  • [33]de Hoon MJ, Imoto S, Nolan J, Miyano S: Open source clustering software. Bioinformatics 2004, 20:1453-1454.
  • [34]Saldanha AJ: Java Treeview--extensible visualization of microarray data. Bioinformatics 2004, 20:3246-3248.
  • [35]Metheny-Barlow LJ, Flynn B, van Gijssel HE, Marrogi A, Gerwin BI: Paradoxical effects of platelet-derived growth factor-A overexpression in malignant mesothelioma. Antiproliferative effects in vitro and tumorigenic stimulation in vivo. Am J Respir Cell Mol Biol 2001, 24:694-702.
  • [36]Mandhane SN, Shah JH, Bahekar PC, Mehetre SV, Pawar CA, Bagad AS, Chidrewar GU, Rao CT, Rajamannar T: Characterization of anti-inflammatory properties and evidence for no sedation liability for the novel antihistamine SUN-1334H. Int Arch Allergy Immunol 2010, 151:56-69.
  • [37]Truong-Tran AQ, Ruffin RE, Foster PS, Koskinen AM, Coyle P, Philcox JC, Rofe AM, Zalewski PD: Altered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation. Am J Respir Cell Mol Biol 2002, 27:286-296.
  • [38]Chambers HF, Kocagoz T, Sipit T, Turner J, Hopewell PC: Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis: an official publication of the Infectious Dis Soc of America 1998, 26:874-877.
  • [39]Nadler JP, Berger J, Nord JA, Cofsky R, Saxena M: Amoxicillin-clavulanic acid for treating drug-resistant Mycobacterium tuberculosis. Chest 1991, 99:1025-1026.
  • [40]Agarwal S: To assess the clinical efficacy of azithromycin and capreomycin in the threatment of multi-drug resistant pulmonary tuberculosis. Chest 2004, 126:752S.
  • [41]Watt B, Rayner A, Harris G: Comparative activity of azithromycin against clinical isolates of mycobacteria. J Antimicrob Chemother 1996, 38:539-542.
  文献评价指标  
  下载次数:83次 浏览次数:14次