期刊论文详细信息
BMC Infectious Diseases
Evaluation of a microcolony growth monitoring method for the rapid determination of ethambutol resistance in Mycobacterium tuberculosis
Richard M Anthony2  Sven Hoffner1  Jim Werngren1  Ernst T Smienk2  Sandra Menting2  Alice L den Hertog2 
[1] Department of Diagnostics and Vaccines, Unit of Highly Pathogenic Microorganisms, Swedish Institute for Communicable Disease Control, S-171 82, Solna, Sweden;Royal Tropical Institute, KIT Biomedical Research, Meibergdreef 39, 1105, AZ, Amsterdam, The Netherlands
关键词: Culture;    Mycobacterium tuberculosis;    Drug susceptibility testing;    Ethambutol;   
Others  :  1127407
DOI  :  10.1186/1471-2334-14-380
 received in 2013-12-02, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

Due to the increasing prevalence of Mycobacterium tuberculosis strains resistant to one or more antibiotics, there is a need for new quantitative culture methods both for drug susceptibility testing and for validation of mutations putatively associated with drug resistance. We previously developed a (myco) bacterial culture method, in which multiple growing microcolonies are monitored individually. Transfer of the growing microcolonies to selective medium allows the effect on the growth rate of each individual colony to be determined. As entire growing colonies are exposed to antibiotics rather than re-subbed, a second lag phase is avoided and results are obtained more rapidly. Here we investigate the performance of the microcolony method to differentiate between ethambutol (EMB) resistant, intermediate and susceptible strains.

Methods

One week old microcolonies from a reference panel of four strains with known EMB susceptibility were transferred to different concentrations of EMB. Growth rates during the 1st 2 days of exposure were used to set up classification criteria to test and classify a blinded panel of 20 tuberculosis strains with different susceptibilities.

Results

For 18 strains (90%) reference culture results corresponded to our classifications based on data collected within 9 days of inoculation. A single strain was classified as Intermediate instead of Susceptible, and 1 strain could not be classified due to a contamination.

Conclusions

Using a microcolony growth monitoring method we were able to classify, within 9 days after inoculation, a panel of strains as EMB susceptible, intermediate or resistant with 90% correlation to the reference methods.

【 授权许可】

   
2014 den Hertog et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220141322839.pdf 653KB PDF download
Figure 4. 54KB Image download
Figure 3. 63KB Image download
Figure 2. 61KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O’Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD: Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010, 363(11):1005-1015.
  • [2]Wells WA, Boehme CC, Cobelens FG, Daniels C, Dowdy D, Gardiner E, Gheuens J, Kim P, Kimerling ME, Kreiswirth B, Lienhardt C, Mdluli K, Pai M, Perkins MD, Peter T, Zignol M, Zumla A, Schito M: Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect Dis 2013, 13(5):449-458.
  • [3]den Hertog AL, Visser DW, Ingham CJ, Fey FH, Klatser PR, Anthony RM: Simplified automated image analysis for detection and phenotyping of Mycobacterium tuberculosis on porous supports by monitoring growing microcolonies. PLOS ONE 2010, 5(6):e11008.
  • [4]Levin-Reisman I, Gefen O, Fridman O, Ronin I, Shwa D, Sheftel H, Balaban NQ: Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat Methods 2010, 7(9):737-739.
  • [5]Drobniewski F, Rüsch-Gerdes S, Hoffner S: Subcommittee on Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis of the European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Antimicrobial susceptibility testing of Mycobacterium tuberculosis (EUCAST document E.DEF 8.1): report of the Subcommittee on Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis of the European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Clin Microbiol Infect 2007, 13(12):1144-1156.
  • [6]Mendoza A, Castillo E, Gamarra N, Huamán T, Perea M, Monroi Y, Salazar R, Coronel J, Acurio M, Obregón G, Roper M, Bonilla C, Asencios L, Moore DA: Reliability of the MODS assay decentralisation process in three health regions in Peru. Int J Tuberc Lung Dis 2011, 15(2):217-222.
  • [7]Zimic M, Velazco A, Comina G, Coronel J, Fuentes P, Luna CG, Sheen P, Gilman RH, Moore DA: Development of low-Cost inverted microscope to detect early growth of Mycobacterium tuberculosis in MODS Culture. PLOS ONE 2010, 5(3):e9577.
  • [8]Van Deun A, Wright A, Zignol M, Weyer K, Rieder HL: Drug susceptibility testing proficiency in the network of supranational tuberculosis reference laboratories. Int J Tuberc Lung Dis 2011, 15(1):116-124.
  • [9]Madison B, Robinson-Dunn B, George I, Gross W, Lipman H, Metchock B, Sloutsky A, Washabaugh G, Mazurek G, Ridderhof J: Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods. J Clin Microbiol 2002, 40(11):3976-3979.
  • [10]Schön T, Juréen P, Giske CG, Chryssanthou E, Sturegård E, Werngren J, Kahlmeter G, Hoffner SE, Angeby KA: Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother 2009, 64(4):786-793.
  • [11]Huitric E, Werngren J, Juréen P, Hoffner S: Resistance levels and rpoB gene mutations among in vitro-selected rifampin-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother 2006, 50(8):2860-2862.
  • [12]Bergval IL, Klatser PR, Schuitema AR, Oskam L, Anthony RM: Specific mutations in the Mycobacterium tuberculosis rpoB gene are associated with increased dnaE2 expression. FEMS Microbiol Lett 2007, 275(2):338-343.
  • [13]Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, Musser JM, Jacobs WR Jr: The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 1997, 3(5):567-570.
  • [14]Engström A, Morcillo N, Imperiale B, Hoffner SE, Juréen P: Detection of first- and second-line drug resistance in Mycobacterium tuberculosis clinical isolates by pyrosequencing. J Clin Microbiol 2012, 50(6):2026-2033.
  • [15]Bergval I, Sengstake S, Brankova N, Levterova V, Abadía E, Tadumaze N, Bablishvili N, Akhalaia M, Tuin K, Schuitema A, Panaiotov S, Bachiyska E, Kantardjiev T, de Zwaan R, Schürch A, Van Soolingen D, Van’t Hoog A, Cobelens F, Aspindzelashvili R, Sola C, Klatser P, Anthony R: Combined species identification, genotyping, and drug resistance detection of Mycobacterium tuberculosis cultures by MLPA on a bead-based array. PLOS ONE 2012, 7(8):e43240.
  • [16]Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A: Fiji: an open-source platform for biological-image analysis. Nat Methods 2012, 9(7):676-682.
  • [17]Preibisch S, Saalfeld S, Tomancak P: Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 2009, 25(11):1463-1465.
  • [18]Lowe DG: Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vision 2004, 60(2):91-110.
  • [19]Horne DJ, Pinto LM, Arentz M, Lin SY, Desmond E, Flores LL, Steingart KR, Minion J: Diagnostic accuracy and reproducibility of WHO-endorsed phenotypic drug susceptibility testing methods for first-line and second-line antituberculosis drugs. J Clin Microbiol 2013, 51(2):393-401.
  • [20]de Steenwinkel JE, de Knegt GJ, ten Kate MT, van Belkum A, Verbrugh HA, Kremer K, van Soolingen D, Bakker-Woudenberg IA: Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J Antimicrob Chemother 2010, 65(12):2582-2589.
  • [21]Plinke C, Rüsch-Gerdes S, Niemann S: Significance of mutations in embB codon 306 for prediction of ethambutol resistance in clinical Mycobacterium tuberculosis Isolates. Antimicrob Agents Chemother 2006, 50(5):1900-1902.
  • [22]Sirgel FA, Warren RM, Streicher EM, Victor TC, van Helden PD, Böttger EC: embB306 mutations as molecular indicators to predict ethambutol susceptibility in Mycobacterium tuberculosis. Chemotherapy 2012, 58(5):358-363.
  • [23]Feng Y, Liu S, Wang Q, Wang L, Tang S, Wang J, Lu W: Rapid diagnosis of drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol using genotype MTBDRsl assay: a meta-analysis. PLOS ONE 2013, 8(2):e55292.
  • [24]Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, McNeil M, Peterson SN, Chatterjee D, Fleischmann R, Alland D: Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 2013, 45(10):1190-1197.
  文献评价指标  
  下载次数:71次 浏览次数:26次