期刊论文详细信息
BMC Systems Biology
Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries
Bor-Sen Chen2  Zhen Xie3  Che Lin1  Rei-Hsing Hu2  Tsung-Hsien Yeh2  Hsiao-Chun Cheng2  Chih-Chun Chang2  Ling-Jiun Lin2  Chih-Yuan Hsu2  Yi-Ying Lee4 
[1] Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;Lab of Genetic Circuit Design, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;Center for Synthetic and Systems Biology, Bioinformatics Division, TNLIST, Tsinghua University, Beijing 100084, China;Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
关键词: Design specifications;    Systematic design methodology;    Promoter-RBS library;    Input/Output (I/O) characteristics;    Genetic transistor;   
Others  :  1141970
DOI  :  10.1186/1752-0509-7-109
 received in 2013-06-04, accepted in 2013-10-17,  发布年份 2013
PDF
【 摘 要 】

Background

Synthetic genetic transistors are vital for signal amplification and switching in genetic circuits. However, it is still problematic to efficiently select the adequate promoters, Ribosome Binding Sides (RBSs) and inducer concentrations to construct a genetic transistor with the desired linear amplification or switching in the Input/Output (I/O) characteristics for practical applications.

Results

Three kinds of promoter-RBS libraries, i.e., a constitutive promoter-RBS library, a repressor-regulated promoter-RBS library and an activator-regulated promoter-RBS library, are constructed for systematic genetic circuit design using the identified kinetic strengths of their promoter-RBS components.

According to the dynamic model of genetic transistors, a design methodology for genetic transistors via a Genetic Algorithm (GA)-based searching algorithm is developed to search for a set of promoter-RBS components and adequate concentrations of inducers to achieve the prescribed I/O characteristics of a genetic transistor. Furthermore, according to design specifications for different types of genetic transistors, a look-up table is built for genetic transistor design, from which we could easily select an adequate set of promoter-RBS components and adequate concentrations of external inducers for a specific genetic transistor.

Conclusion

This systematic design method will reduce the time spent using trial-and-error methods in the experimental procedure for a genetic transistor with a desired I/O characteristic. We demonstrate the applicability of our design methodology to genetic transistors that have desirable linear amplification or switching by employing promoter-RBS library searching.

【 授权许可】

   
2013 Lee et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327180903369.pdf 621KB PDF download
Figure 3. 30KB Image download
Figure 2. 28KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Benner SA, Sismour AM: Synthetic biology. Nat Rev Genet 2005, 6:533-543.
  • [2]Gardner TS, Cantor CR, Collins JJ: Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403:339-342.
  • [3]Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ: Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 2004, 101:8414-8419.
  • [4]Atkinson MR, Savageau MA, Myers JT, Ninfa AJ: Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 2003, 113:597-607.
  • [5]Hasty J, McMillen D, Collins JJ: Engineered gene circuits. Nature 2002, 420:224-230.
  • [6]Elowitz MB, Leibler S: A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403:335-338.
  • [7]Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J: A fast, robust and tunable synthetic gene oscillator. Nature 2008, 456:516-519.
  • [8]Danino T, Mondragón-Palomino O, Tsimring L, Hasty J: A synchronized quorum of genetic clocks. Nature 2010, 463:326-330.
  • [9]Mondragón-Palomino O, Danino T, Selimkhanov J, Tsimring L, Hasty J: Entrainment of a population of synthetic genetic oscillators. Science 2011, 333:1315-1319.
  • [10]Chang YC, Lin CL, Jennawasin T: Design of synthetic genetic oscillators using evolutionary optimization. Evol Bioinform Online 2013, 9:137-150.
  • [11]Wang RQ, Chen LN: Synchronizing genetic oscillators by signaling molecules. J Biol Rhythm 2005, 20:257-269.
  • [12]Wang RQ, Jing ZJ, Chen LN: Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems. Bull Math Biol 2005, 67:339-367.
  • [13]Wang RQ, Chen LN, Aihara K: Synchronizing a multicellular system by external input: an artificial control strategy. Bioinformatics 2006, 22:1775-1781.
  • [14]Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R: Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A 2004, 101:6355-6360.
  • [15]Voigt CA: Genetic parts to program bacteria. Curr Opin Biotechnol 2006, 17:548-557.
  • [16]Anderson JC, Voigt CA, Arkin AP: Environmental signal integration by a modular AND gate. Mol Syst Biol 2007, 3:133.
  • [17]Tamsir A, Tabor JJ, Voigt CA: Robust multicellular computing using genetically encoded NOR gates and chemical 'wires’. Nature 2011, 469:212-215.
  • [18]Wang B, Kitney RI, Joly N, Buck M: Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2011, 2:508.
  • [19]Khalil AS, Collins JJ: Synthetic biology: applications come of age. Nat Rev Genet 2010, 11:367-379.
  • [20]Sohka T, Heins RA, Phelan RM, Greisier JM, Townsend CA, Ostermeier M: An externally tunable bacterial band-pass filter. Proc Natl Acad Sci U S A 2009, 106:10135-10140.
  • [21]Kampf MM, Engesser R, Busacker M, Horner M, Karisson M, Zurbrigger MD, Fussenegger M, Timmer J, Weber W: Rewiring and dosing of systems modules as a design approach for synthetic mammalian signaling networks. Mol BioSyst 2012, 8:1824-1832.
  • [22]Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R: A synthetic multicellular system for programmed pattern formation. Nature 2005, 434:1130-1134.
  • [23]Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskavya A, Marcotte EM, Voigt CA, Ellington AD: A synthetic genetic edge detection program. Cell 2009, 137:1272-1281.
  • [24]Tabor JJ, Levskaya A, Voigt CA: Multichromatic control of gene expression in Escherichia coli. J Mol Biol 2011, 405:315-324.
  • [25]Callura JM, Cantor CR, Collins JJ: Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci U S A 2012, 109:5850-5855.
  • [26]De Gianna R, Davies SW: A genetic circuit amplifier: design and simulation. IEEE Trans Nanobioscience 2003, 2:239-246.
  • [27]Nistala G, Wu K, Rao CV, Bhalerao KD: A modular positive feedback-based gene amplifier. J Biol Eng 2010, 4:1-8. BioMed Central Full Text
  • [28]Martineau RL, Stout V, Towe BC: Optical tracking of a stress-responsive gene amplifier applied to cell-based biosensing and the study of synthetic architectures. Biosens Bioelectron 2010, 25:1881-1888.
  • [29]Deans TL, Cantor CR, Collins JJ: A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 2007, 130:363-372.
  • [30]Canton B, Labno A, Endy D: Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 2008, 26:787-793.
  • [31]Shetty R, Endy D, Knight T: Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2008, 2:5. BioMed Central Full Text
  • [32]Johansson R: System Modeling & Identification. Englewood Cliffs, NJ: Prentice-Hall, Inc; 1993.
  • [33]Kelly J, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D: Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 2009, 3:4. BioMed Central Full Text
  • [34]Mutalik VK, Guimaraes JC, Cambray G, Mai QA, Christoffersen MJ, Martin L, Yu A, Lam C, Rodriquez C, Bennett G, Keasling JD, Endy D, Arkin AP: Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods 2013, 10:347-353.
  • [35]Lou C, Stanton B, Chen YJ, Munsky B, Voigt CA: Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol 2012, 30:1137-1142.
  • [36]Chen BS, Chang CH, Wang YC, Lee HC: Robust model matching design methodology for a stochastic synthetic gene network. Math Biosci 2011, 230:23-36.
  • [37]Chen BS, Wu CH: A systematic design method for robust synthetic biology to satisfy design specifications. BMC Syst Biol 2009, 3:66. BioMed Central Full Text
  • [38]Wu CH, Lee HC, Chen BS: Robust synthetic gene network design via library-based search method. Bioinformatics 2011, 27:2700-2706.
  • [39]Rodrigo G, Carrera J, Jaramillo A: Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors. Nucleic Acids Res 2011, 39:e138.
  • [40]Mondragon-Palomino O, Danino T, Selimkhanov J, Tsimring L, Hasty J: Entrainment of a population of synthetic genetic oscillators. Science 2011, 333:1315-1319.
  • [41]Tuttle LM, Salis H, Tomshine J, Kaznessis YN: Model-driven designs of an oscillating gene network. Biophys J 2005, 89:3873-3883.
  • [42]Purcell O, di Bernardo M, Grierson CS, Savery NJ: A multi-functional synthetic gene network: a frequency multiplier, oscillator and switch. PLoS One 2011, 6:16140.
  • [43]Rey O, Young SH, Yuan J, Rozengurt E: Amino acid-stimulated Ca2+ oscillations produced by the Ca2 + -sensing receptor are mediated by a phospholipase C/inositol 1,4,5-trisphosphate-independent pathway that requires G12, rho, filamin-A, and the actin cytoskeleton. J Biol Chem 2005, 280:22875-22882.
  • [44]Di Capite J, Ng SW, Parekh AB: Decoding of cytoplasmic CA2+ oscillations through the spatial signature drives gene expression. Curr Biol 2009, 19:853-858.
  • [45]Taylor SR, Gunawan R, Petzold LR, Doyle FJ III: Sensitivity measures for oscillating systems: application to mammalian circadian gene network. IEEE Trans Automat Contr 2008, 53:177-188.
  • [46]Lin CL, Liu YW, Chuang CH: Control design for signal transduction networks. Bioinform Biol Insights 2009, 3:1-14.
  • [47]Cuero R, Lilly J, McKay DS: Constructed molecular sensor to enhance metal detection by bacterial ribosomal switch–ion channel protein interaction. J Biotechnol 2012, 158:1-7.
  文献评价指标  
  下载次数:45次 浏览次数:1次