期刊论文详细信息
BMC Developmental Biology
Muscleblind-like 1 is required for normal heart valve development in vivo
Andrea N. Ladd4  Maurice S. Swanson5  Michael W. Jenkins1  Anuradha Guggilam4  Samantha J. Stillwagon3  Ryan J. Coram2 
[1] Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland 44106, OH, USA;Present Address: Ohio University Heritage College of Osteopathic Medicine, Athens 45701, OH, USA;Present Address: Department of Obstetrics and Gynecology, Women’s Health Institute, Cleveland Clinic, Cleveland 44195, OH, USA;Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland 44195, OH, USA;Department of Molecular Genetics & Microbiology, College of Medicine, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville 32610, FL, USA
关键词: Mouse;    Heart valves;    Endocardial cushions;    Epithelial-mesenchymal transition;    Transforming growth factor β;    Muscleblind-like 1;   
Others  :  1231010
DOI  :  10.1186/s12861-015-0087-4
 received in 2015-07-27, accepted in 2015-10-09,  发布年份 2015
【 摘 要 】

Background

Development of the valves and septa of the heart depends on the formation and remodeling of the endocardial cushions in the atrioventricular canal and outflow tract. These cushions are populated by mesenchyme produced from the endocardium by epithelial-mesenchymal transition (EMT). The endocardial cushions are remodeled into the valves at post-EMT stages via differentiation of the mesenchyme and changes in the extracellular matrix (ECM). Transforming growth factor β (TGFβ) signaling has been implicated in both the induction of EMT in the endocardial cushions and the remodeling of the valves at post-EMT stages. We previously identified the RNA binding protein muscleblind-like 1 (MBNL1) as a negative regulator of TGFβ signaling and EMT in chicken endocardial cushions ex vivo.  Here, we investigate the role of MBNL1 in endocardial cushion development and valvulogenesis in Mbnl1∆E3/∆E3mice, which are null for MBNL1 protein.

Methods

Collagen gel invasion assays, histology, immunohistochemistry, real-time RT-PCR, optical coherence tomography, and echocardiography were used to evaluate EMT and TGFβ signaling in the endocardial cushions, and morphogenesis, ECM composition, and function of the heart valves.

Results

As in chicken, the loss of MBNL1 promotes precocious TGFβ signaling and EMT in the endocardial cushions. Surprisingly, this does not lead to the production of excess mesenchyme, but later valve morphogenesis is aberrant. Adult Mbnl1 ∆E3/∆E3 mice exhibit valve dysmorphia with elevated TGFβ signaling, changes in ECM composition, and increased pigmentation. This is accompanied by a high incidence of regurgitation across both inflow and outflow valves. Mbnl1 ∆E3/∆E3 mice also have a high incidence of ostium secundum septal defects accompanied by atrial communication, but do not develop overt cardiomyopathy.

Conclusions

Together, these data indicate that MBNL1 plays a conserved role in negatively regulating TGFβ signaling, and is required for normal valve morphogenesis and homeostasis in vivo.

【 授权许可】

   
2015 Coram et al.

附件列表
Files Size Format View
Fig. 8. 83KB Image download
Fig. 7. 96KB Image download
Fig. 6. 106KB Image download
Fig. 5. 202KB Image download
Fig. 4. 27KB Image download
Fig. 3. 172KB Image download
Fig. 2. 60KB Image download
Fig. 1. 153KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Pierpont ME, Basson CT, Benson DW, Gelb BD, Giglia TM, Goldmuntz E et al.. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007; 115(23):3015-38.
  • [2]Lincoln J, Yutzey KE. Molecular and developmental mechanisms of congenital heart valve disease. Birth Defects Res A Clin Mol Teratol. 2011; 91(6):526-34.
  • [3]Hinton RB, Yutzey KE. Heart valve structure and function in development and disease. Ann Rev Physiol. 2011; 73:29-46.
  • [4]Lahaye S, Lincoln J, Garg V. Genetics of valvular heart disease. Curr Cardiol Rep. 2014; 16(6):487.
  • [5]Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005; 243:287-335.
  • [6]Kirby ML. Cardiac Development. Oxford University Press, New York; 2007.
  • [7]Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A et al.. Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn. 2009; 238(2):431-42.
  • [8]Boyer AS, Ayerinskas II, Vincent EB, McKinney LA, Weeks DL, Runyan RB. TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol. 1999; 208(2):530-45.
  • [9]Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci U S A. 1991; 88(4):1516-20.
  • [10]Ghosh S, Brauer PR. Latent transforming growth factor-beta is present in the extracellular matrix of embryonic hearts in situ. Dev Dyn. 1996; 205(2):126-34.
  • [11]Nakajima Y, Yamagishi T, Nakamura H, Markwald RR, Krug EL. An autocrine function for transforming growth factor (TGF)-beta3 in the transformation of atrioventricular canal endocardium into mesenchyme during chick heart development. Dev Biol. 1998; 194(1):99-113.
  • [12]Ramsdell AF, Markwald RR. Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGFbeta-3-mediated autocrine signaling. Dev Biol. 1997; 188(1):64-74.
  • [13]Camenisch TD, Molin DG, Person A, Runyan RB, Gittenberger-de Groot AC, McDonald JA et al.. Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol. 2002; 248(1):170-81.
  • [14]Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N et al.. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995; 11(4):415-21.
  • [15]Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN et al.. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet. 1995; 11(4):409-14.
  • [16]Millan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development. 1991; 111(1):131-43.
  • [17]Azhar M, Brown K, Gard C, Chen H, Rajan S, Elliott DA et al.. Transforming growth factor Beta2 is required for valve remodeling during heart development. Dev Dyn. 2011; 240(9):2127-41.
  • [18]Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP et al.. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development. 1997; 124(13):2659-70.
  • [19]Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. Maternal rescue of transforming growth factor-beta 1 null mice. Science. 1994; 264(5167):1936-8.
  • [20]LeMasters KE, Blech-Hermoni Y, Stillwagon SJ, Vajda NA, Ladd AN. Loss of muscleblind-like 1 promotes invasive mesenchyme formation in endocardial cushions by stimulating autocrine TGFbeta3. BMC Dev Biol. 2012; 12(1):22. BioMed Central Full Text
  • [21]Vajda NA, Brimacombe KR, LeMasters KE, Ladd AN. Muscleblind-like 1 is a negative regulator of TGF-beta-dependent epithelial-mesenchymal transition of atrioventricular canal endocardial cells. Dev Dyn. 2009; 238(12):3266-72.
  • [22]Batra R, Charizanis K, Manchanda M, Mohan A, Li M, Finn DJ et al.. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell. 2014; 56(2):311-22.
  • [23]Ho T, Charlet-B N, Poulos M, Singh G, Swanson M, Cooper T. Muscleblind proteins regulate alternative splicing. EMBO J. 2004; 23:3103-12.
  • [24]Wang ET, Cody NA, Jog S, Biancolella M, Wang TT, Treacy DJ et al.. Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins. Cell. 2012; 150(4):710-24.
  • [25]Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer MC, Jost B et al.. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol. 2011; 18(7):840-5.
  • [26]Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB et al.. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A. 2008; 105(51):20333-8.
  • [27]Ladd A, Stenberg M, Swanson M, Cooper T. A dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn. 2005; 233(3):783-93.
  • [28]Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation. 2006; 74(2–3):65-80.
  • [29]Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT et al.. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet. 2006; 15(13):2087-97.
  • [30]Terenzi F, Ladd AN. Conserved developmental alternative splicing of muscleblind-like (MBNL) transcripts regulates MBNL localization and activity. RNA Biol. 2010; 7(1):43-55.
  • [31]Kino Y, Washizu C, Kurosawa M, Oma Y, Hattori N, Ishiura S et al.. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. Hum Mol Genet. 2015; 24(3):740-56.
  • [32]Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007; 185(1–3):146-56.
  • [33]DeLaughter DM, Saint-Jean L, Baldwin HS, Barnett JV. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. Birth Defects Res A Clin Mol Teratol. 2011; 91(6):511-25.
  • [34]Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci. 2012; 69(15):2527-41.
  • [35]Funaba M, Ikeda T, Murakami M, Ogawa K, Tsuchida K, Sugino H et al.. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor. J Biol Chem. 2003; 278(52):52032-41.
  • [36]Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol. 2001; 235(2):449-66.
  • [37]Hullinger TG, Pan Q, Viswanathan HL, Somerman MJ. TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp Cell Res. 2001; 262(1):69-74.
  • [38]Peacock JD, Huk DJ, Ediriweera HN, Lincoln J. Sox9 transcriptionally represses Spp1 to prevent matrix mineralization in maturing heart valves and chondrocytes. PLoS One. 2011; 6(10):e26769.
  • [39]Sainger R, Grau JB, Poggio P, Branchetti E, Bavaria JE, Gorman JH et al.. Dephosphorylation of circulating human osteopontin correlates with severe valvular calcification in patients with calcific aortic valve disease. Biomarkers. 2012; 17(2):111-8.
  • [40]Grau JB, Poggio P, Sainger R, Vernick WJ, Seefried WF, Branchetti E et al.. Analysis of osteopontin levels for the identification of asymptomatic patients with calcific aortic valve disease. Ann Thorac Surg. 2012; 93(1):79-86.
  • [41]Cheek JD, Wirrig EE, Alfieri CM, James JF, Yutzey KE. Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. J Mol Cell Cardiol. 2012; 52(3):689-700.
  • [42]Norris RA, Moreno-Rodriguez RA, Sugi Y, Hoffman S, Amos J, Hart MM et al.. Periostin regulates atrioventricular valve maturation. Dev Biol. 2008; 316(2):200-13.
  • [43]Hinton RB, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW et al.. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006; 98(11):1431-8.
  • [44]Bouchey D, Argraves WS, Little CD. Fibulin-1, vitronectin, and fibronectin expression during avian cardiac valve and septa development. Anat Rec. 1996; 244(4):540-51.
  • [45]Kruithof BP, Krawitz SA, Gaussin V. Atrioventricular valve development during late embryonic and postnatal stages involves condensation and extracellular matrix remodeling. Dev Biol. 2007; 302(1):208-17.
  • [46]Cole-Jeffrey CT, Terada R, Neth MR, Wessels A, Kasahara H. Progressive anatomical closure of foramen ovale in normal neonatal mouse hearts. Anat Rec. 2012; 295(5):764-8.
  • [47]Briggs LE, Kakarla J, Wessels A. The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation. 2012; 84(1):117-30.
  • [48]Lee KY, Li M, Manchanda M, Batra R, Charizanis K, Mohan A et al.. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol Med. 2013; 5(12):1887-900.
  • [49]Charizanis K, Lee KY, Batra R, Goodwin M, Zhang C, Yuan Y et al.. Muscleblind-like 2-Mediated Alternative Splicing in the Developing Brain and Dysregulation in Myotonic Dystrophy. Neuron. 2012; 75(3):437-50.
  • [50]Masuda A, Andersen HS, Doktor TK, Okamoto T, Ito M, Andresen BS et al.. CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Sci Rep. 2012; 2:209.
  • [51]Brito FC, Kos L. Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res. 2008; 21(4):464-70.
  • [52]Mjaatvedt CH, Kern CB, Norris RA, Fairey S, Cave CL. Normal distribution of melanocytes in the mouse heart. Anat Rec A Discov Mol Cell Evol Biol. 2005; 285(2):748-57.
  • [53]Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res. 2006; 98(12):1547-54.
  • [54]Nichols SE, Reams WM. The occurrence and morphogenesis of melanocytes in the connective tissues of the PET/MCV mouse strain. J Embryol Exp Morphol. 1960; 8:24-32.
  • [55]Yajima I, Larue L. The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell Melanoma Res. 2008; 21(4):471-6.
  • [56]Levin MD, Lu MM, Petrenko NB, Hawkins BJ, Gupta TH, Lang D et al.. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. J Clin Invest. 2009; 119(11):3420-36.
  • [57]Schoser B, Timchenko L. Myotonic dystrophies 1 and 2: complex diseases with complex mechanisms. Curr Genomics. 2010; 11(2):77-90.
  • [58]Chaudhry SP, Frishman WH. Myotonic dystrophies and the heart. Cardiol Rev. 2012; 20(1):1-3.
  • [59]Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D et al.. A muscleblind knockout model for myotonic dystrophy. Science. 2003; 302(5652):1978-80.
  • [60]Nesta F, Leyne M, Yosefy C, Simpson C, Dai D, Marshall JE et al.. New locus for autosomal dominant mitral valve prolapse on chromosome 13: clinical insights from genetic studies. Circulation. 2005; 112(13):2022-30.
  • [61]Han H, Irimia M, Ross PJ, Sung HK, Alipanahi B, David L et al.. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature. 2013; 498(7453):241-5.
  • [62]Venables JP, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M et al.. MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun. 2013; 4:2480.
  • [63]Miller J, Urbinati C, Teng-umnuay P, Stenberg M, Byrne B, Thornton C et al.. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 2000; 19(17):4439-48.
  • [64]Redmond LC, Dumur CI, Archer KJ, Haar JL, Lloyd JA. Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells. Dev Dyn. 2008; 237(2):436-46.
  • [65]Shang CA, Thompson BJ, Teasdale R, Brown RJ, Waters MJ. Genes induced by growth hormone in a model of adipogenic differentiation. Mol Cell Endocrinol. 2002; 189(1–2):213-9.
  • [66]Coleman SM, Prescott AR, Sleeman JE. Transcriptionally correlated subcellular dynamics of MBNL1 during lens development and their implication for the molecular pathology of myotonic dystrophy type 1. Biochem J. 2014; 458(2):267-80.
  • [67]Cheng AW, Shi J, Wong P, Luo KL, Trepman P, Wang ET et al.. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis. Blood. 2014; 124(4):598-610.
  • [68]Fayet C, Bendeck MP, Gotlieb AI. Cardiac valve interstitial cells secrete fibronectin and form fibrillar adhesions in response to injury. Cardiovasc Pathol. 2007; 16(4):203-11.
  • [69]Jian B, Narula N, Li QY, Mohler ER, Levy RJ. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg. 2003; 75(2):457-65.
  • [70]Gwanmesia P, Ziegler H, Eurich R, Barth M, Kamiya H, Karck M et al.. Opposite effects of transforming growth factor-beta1 and vascular endothelial growth factor on the degeneration of aortic valvular interstitial cell are modified by the extracellular matrix protein fibronectin: implications for heart valve engineering. Tissue Eng Part A. 2010; 16(12):3737-46.
  • [71]Sulaimon SS, Kitchell BE. The biology of melanocytes. Vet Dermatol. 2003; 14(2):57-65.
  • [72]Aquaron R. Alkaptonuria: a very rare metabolic disorder. Indian J Biochem Biophys. 2013; 50(5):339-44.
  • [73]Kenny D, Ptacin MJ, Bamrah VS, Almagro U. Cardiovascular ochronosis: a case report and review of the medical literature. Cardiology. 1990; 77(6):477-83.
  • [74]Butany JW, Naseemuddin A, Moshkowitz Y, Nair V. Ochronosis and aortic valve stenosis. J Card Surg. 2006; 21(2):182-4.
  • [75]Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick DL et al.. Natural history of alkaptonuria. New Engl J Med. 2002; 347(26):2111-21.
  • [76]Balani K, Brito FC, Kos L, Agarwal A. Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet. J R Soc Interface. 2009; 6(40):1097-102.
  • [77]Nagata S, Nimura Y, Sakakibara H, Beppu S, Park YD, Kawazoe K et al.. Mitral valve lesion associated with secundum atrial septal defect. Analysis by real time two dimensional echocardiography. Br Heart J. 1983; 49(1):51-8.
  • [78]Leachman RD, Cokkinos DV, Cooley DA. Association of ostium secundum atrial septal defects with mitral valve prolapse. Am J Cardiol. 1976; 38(2):167-9.
  • [79]Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA et al.. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003; 424(6947):443-7.
  • [80]Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H et al.. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A. 2005; 135(1):47-52.
  • [81]Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML et al.. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007; 81(2):280-91.
  • [82]Dixon DM, Choi J, El-Ghazali A, Park SY, Roos KP, Jordan MC et al.. Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Sci Rep. 2015; 5:9042.
  • [83]Mankodi A, Teng-Umnuay P, Krym M, Henderson D, Swanson M, Thornton CA. Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol. 2003; 54(6):760-8.
  • [84]Brady J. A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull World Health Organ. 1965; 32(1):143-4.
  • [85]Dasgupta T, Stillwagon SJ, Ladd AN. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice. PLoS One. 2013; 8(2):e56590.
  • [86]Barnette DN, Hulin A, Ahmed AS, Colige AC, Azhar M, Lincoln J. Tgfbeta-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J Mol Cell Cardiol. 2013; 65:137-46.
  • [87]Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development. 2013; 140(6):1364-8.
  • [88]Karunamuni G, Gu S, Doughman YQ, Noonan AI, Rollins AM, Jenkins MW et al.. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure. Dev Dyn. 2015; 244(4):607-18.
  • [89]Hu Z, Rollins AM. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Opt Lett. 2007; 32(24):3525-7.
  • [90]Karunamuni G, Gu S, Doughman YQ, Peterson LM, Mai K, McHale Q et al.. Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects? Amer J Physiol Heart Circ Physiol. 2014; 306(3):H414-21.
  • [91]Jenkins MW, Watanabe M, Rollins AM. Longitudinal Imaging of Heart Development with Optical Coherence Tomography. IEEE J Sel Topics Quantum Electron. 2012; 18(3):1166-75.
  • [92]Hartley C, Taffet G, Reddy A, Entman M, Michael L. Noninvasive cardiovascular phenotyping in mice. ILAR J. 2002; 43(3):147-58.
  文献评价指标  
  下载次数:27次 浏览次数:6次