期刊论文详细信息
BMC Medicine
Mammalian NPC1 genes may undergo positive selection and human polymorphisms associate with type 2 diabetes
Manuela Sironi3  Mario Clerici1  Shaun Sabico2  Khalid M Alkharfy4  Uberto Pozzoli3  Majed S Alokail2  Diego Forni3  Rachele Cagliani3  Nasser M Al-Daghri2 
[1] Department of Pathophysiology and Transplantation, Milano University Medical School, Via Fratelli Cervi, Milano 20090, Italy;Center of Excellence in Biotechnology, King Saud University, King Abdullah road, Riyadh 11451, Kingdom of Saudi Arabia;Bioinformatics, Scientific Institute IRCCS E.MEDEA, Via Don L. Monza 20, Bosisio Parini 23842, Italy;Clinical Pharmacy Department, College of Pharmacy, King Saud University, King Abdullah road, Riyadh 11451, Kingdom of Saudi Arabia
关键词: type 2 diabetes;    natural selection;    filovirus;    NPC1;   
Others  :  857297
DOI  :  10.1186/1741-7015-10-140
 received in 2012-08-06, accepted in 2012-11-15,  发布年份 2012
PDF
【 摘 要 】

Background

The NPC1 gene encodes a protein involved in intracellular lipid trafficking; its second endosomal loop (loop 2) is a receptor for filoviruses. A polymorphism (His215Arg) in NPC1 was associated with obesity in Europeans. Adaptations to diet and pathogens represented powerful selective forces; thus, we analyzed the evolutionary history of the gene and exploited this information for the identification of variants/residues of functional importance in human disease.

Methods

We performed phylogenetic analysis, population genetic tests, and genotype-phenotype analysis in a population from Saudi Arabia.

Results

Maximum-likelihood ratio tests indicated the action of positive selection on loop 2 and identified three residues as selection targets; these were confirmed by an independent random effects likelihood (REL) analysis. No selection signature was detected in present-day human populations, but analysis of nonsynonymous polymorphisms showed that a variant (Ile642Met, rs1788799) in the sterol sensing domain affects a highly conserved position. This variant and the previously described His215Arg polymorphism were tested for association with obesity and type 2 diabetes (T2D) in a cohort from Saudi Arabia. Whereas no association with obesity was detected, 642Met allele was found to predispose to T2D. A significant interaction was noted with sex (P = 0.041), and stratification on the basis of gender indicated that the association is driven by men (P = 0.0021, OR = 1.5). Notably, two NPC1 haplotypes were also associated with T2D in men (rs1805081-rs1788799, His-Met: P = 0.0012, OR = 1.54; His-Ile: P = 0.0004, OR = 0.63).

Conclusions

Our data indicate a sex-specific effect of NPC1 variants on T2D risk and describe putative binding sites for filoviruses entry.

【 授权许可】

   
2012 Al-Daghri et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723074439701.pdf 867KB PDF download
31KB Image download
59KB Image download
【 图 表 】

【 参考文献 】
  • [1]Garver WS: Gene-diet interactions in childhood obesity. Curr Genomics 2011, 12:180-189.
  • [2]Davies JP, Ioannou YA: Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem 2000, 275:24367-24374.
  • [3]Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K: Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 2012, 31:1947-1960.
  • [4]Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 2011, 477:340-343.
  • [5]Cote M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J: Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 2011, 477:344-348.
  • [6]Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ: Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 1997, 277:232-235.
  • [7]Jelinek D, Millward V, Birdi A, Trouard TP, Heidenreich RA, Garver WS: Npc1 haploinsufficiency promotes weight gain and metabolic features associated with insulin resistance. Hum Mol Genet 2011, 20:312-321.
  • [8]Jelinek D, Heidenreich RA, Erickson RP, Garver WS: Decreased Npc1 gene dosage in mice is associated with weight gain. Obesity (Silver Spring) 2010, 18:1457-1459.
  • [9]Meyre D, Delplanque J, Chevre JC, Lecoeur C, Lobbens S, Gallina S, Durand E, Vatin V, Degraeve F, Proenca C, Gaget S, Korner A, Kovacs P, Kiess W, Tichet J, Marre M, Hartikainen AL, Horber F, Potoczna N, Hercberg S, Levy-Marchal C, Pattou F, Heude B, Tauber M, McCarthy MI, Blakemore AI, Montpetit A, Polychronakos C, Weill J, Coin LJ, et al.: Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 2009, 41:157-159.
  • [10]Sandholt CH, Vestmar MA, Bille DS, Borglykke A, Almind K, Hansen L, Sandbaek A, Lauritzen T, Witte D, Jorgensen T, Pedersen O, Hansen T: Studies of metabolic phenotypic correlates of 15 obesity associated gene variants. PLoS One 2011, 6:e23531.
  • [11]Xi B, Wang C, Wu L, Zhang M, Shen Y, Zhao X, Wang X, Mi J: Influence of physical inactivity on associations between single nucleotide polymorphisms and genetic predisposition to childhood obesity. Am J Epidemiol 2011, 173:1256-1262.
  • [12]Wu L, Xi B, Zhang M, Shen Y, Zhao X, Cheng H, Hou D, Sun D, Ott J, Wang X, Mi J: Associations of six single nucleotide polymorphisms in obesity-related genes with BMI and risk of obesity in Chinese children. Diabetes 2010, 59:3085-3089.
  • [13]Garver WS, Erickson RP, Wilson JM, Colton TL, Hossain GS, Kozloski MA, Heidenreich RA: Altered expression of caveolin-1 and increased cholesterol in detergent insoluble membrane fractions from liver in mice with Niemann-Pick disease type C. Biochim Biophys Acta 1997, 1361:272-280.
  • [14]Fernandez-Rojo MA, Restall C, Ferguson C, Martel N, Martin S, Bosch M, Kassan A, Leong GM, Martin SD, McGee SL, Muscat GE, Anderson RL, Enrich C, Pol A, Parton RG: Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology 2012, 55:1574-1584.
  • [15]Garver WS, Jelinek D, Oyarzo JN, Flynn J, Zuckerman M, Krishnan K, Chung BH, Heidenreich RA: Characterization of liver disease and lipid metabolism in the Niemann-Pick C1 mouse. J Cell Biochem 2007, 101:498-516.
  • [16]Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six Mammalian genomes. PLoS Genet 2008, 4:e1000144.
  • [17]Ensembl Genome Browser [http://www.ensembl.org/index.html] webcite
  • [18]Wernersson R, Pedersen AG: RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 2003, 31:3537-3539.
  • [19]Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD: Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 2006, 23:1891-1901.
  • [20]Delport W, Poon AF, Frost SD, Kosakovsky Pond SL: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010, 26:2455-2457.
  • [21]Anisimova M, Bielawski JP, Yang Z: Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 2002, 19:950-958.
  • [22]Yang Z, Wong WS, Nielsen R: Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22:1107-1118.
  • [23]1000 Genomes [http://www.1000genomes.org/] webcite
  • [24]Cereda M, Sironi M, Cavalleri M, Pozzoli U: GeCo++: a C++ library for genomic features computation and annotation in the presence of variants. Bioinformatics 2011, 27:1313-1315.
  • [25]Thornton K: Libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics 2003, 19:2325-2327.
  • [26]Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4:e72.
  • [27]Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Yousef M, Sabico SL, Chrousos GP: Diabetes mellitus type 2 and other chronic non-communicable diseases in the central region, Saudi Arabia (Riyadh cohort 2): a decade of an epidemic. BMC Med 2011, 9:76. BioMed Central Full Text
  • [28]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81:559-575.
  • [29]Pond SL, Scheffler K, Gravenor MB, Poon AF, Frost SD: Evolutionary fingerprinting of genes. Mol Biol Evol 2010, 27:520-536.
  • [30]Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997, 13:555-556.
  • [31]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [32]Pond SK, Muse SV: Site-to-site variation of synonymous substitution rates. Mol Biol Evol 2005, 22:2375-2385.
  • [33]Kosakovsky Pond SL, Murrell B, Fourment M, Frost SD, Delport W, Scheffler K: A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 2011, 28:3033-3043.
  • [34]1000 Genomes Project Consortium, Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA: A map of human genome variation from population-scale sequencing. Nature 2010, 467:1061-1073.
  • [35]Watterson GA: On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975, 7:256-276.
  • [36]Nei M, Li WH: Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 1979, 76:5269-5273.
  • [37]Wright S: Genetical structure of populations. Nature 1950, 166:247-249.
  • [38]Emerman M, Malik HS: Paleovirology--modern consequences of ancient viruses. PLoS Biol 2010, 8:e1000301.
  • [39]Kerns JA, Emerman M, Malik HS: Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet 2008, 4:e21.
  • [40]Kaiser SM, Malik HS, Emerman M: Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science 2007, 316:1756-1758.
  • [41]OhAinle M, Kerns JA, Malik HS, Emerman M: Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol 2006, 80:3853-3862.
  • [42]Elde NC, Child SJ, Geballe AP, Malik HS: Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 2009, 457:485-489.
  • [43]Nakajima T, Wooding S, Satta Y, Jinnai N, Goto S, Hayasaka I, Saitou N, Guan-Jun J, Tokunaga K, Jorde LB, Emi M, Inoue I: Evidence for natural selection in the HAVCR1 gene: high degree of amino-acid variability in the mucin domain of human HAVCR1 protein. Genes Immun 2005, 6:398-406.
  • [44]Patel MR, Loo YM, Horner SM, Gale M Jr, Malik HS: Convergent evolution of escape from hepaciviral antagonism in primates. PLoS Biol 2012, 10:e1001282.
  • [45]McNatt MW, Zang T, Hatziioannou T, Bartlett M, Fofana IB, Johnson WE, Neil SJ, Bieniasz PD: Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog 2009, 5:e1000300.
  • [46]Zhang ZD, Weinstock G, Gerstein M: Rapid evolution by positive Darwinian selection in T-cell antigen CD4 in primates. J Mol Evol 2008, 66:446-456.
  • [47]Kosakovsky Pond SL, Frost SD: Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005, 22:1208-1222.
  • [48]Takada A: Filovirus tropism: cellular molecules for viral entry. Front Microbiol 2012, 3:34.
  • [49]Belyi VA, Levine AJ, Skalka AM: Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog 2010, 6:e1001030.
  • [50]Dobson A: People and disease. In The Cambridge Encyclopedia of Human Evolution. Edited by Jones S, Martin R, Pilbeam D. Cambridge: Cambridge University Press; 1992:411-420.
  • [51]Neel JV: Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? 1962. Bull World Health Organ 1999, 77:694-703. discussion 692-693
  • [52]Di Rienzo A, Hudson RR: An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet 2005, 21:596-601.
  • [53]Di Rienzo A: Population genetics models of common diseases. Curr Opin Genet Dev 2006, 16:630-636.
  • [54]Luca F, Perry GH, Di Rienzo A: Evolutionary adaptations to dietary changes. Annu Rev Nutr 2010, 30:291-314.
  • [55]Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index): National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011, 377:557-567.
  • [56]Al-Othaimeen AI, Al-Nozha M, Osman AK: Obesity: an emerging problem in Saudi Arabia. Analysis of data from the National Nutrition Survey. East Mediterr Health J 2007, 13:441-448.
  • [57]Al-Nozha MM, Al-Maatouq MA, Al-Mazrou YY, Al-Harthi SS, Arafah MR, Khalil MZ, Khan NB, Al-Khadra A, Al-Marzouki K, Nouh MS, Abdullah M, Attas O, Al-Shahid MS, Al-Mobeireek A: Diabetes mellitus in Saudi Arabia. Saudi Med J 2004, 25:1603-1610.
  • [58]den Hoed M, Luan J, Langenberg C, Cooper C, Sayer AA, Jameson K, Kumari M, Kivimaki M, Hingorani AD, Grontved A, Khaw KT, Ekelund U, Wareham NJ, Loos RJ: Evaluation of common genetic variants identified by GWAS for early onset and morbid obesity in population-based samples. Int J Obes (Lond) 2012. doi: 10.1038/ijo.2012.34
  • [59]Jelinek D, Heidenreich RA, Garver WS: The Niemann-Pick C1 gene interacts with a high-fat diet and modifying genes to promote weight gain. Am J Med Genet A 2011, (155A):2317-2319.
  • [60]Borbon I, Campbell E, Ke W, Erickson RP: The role of decreased levels of Niemann-Pick C1 intracellular cholesterol transport on obesity is reversed in the C57BL/6J, metabolic syndrome mouse strain: a metabolic or an inflammatory effect? J Appl Genet 2012, 53:323-330.
  • [61]Matsuda A, Kuzuya T: Relationship between obesity and concordance rate for type 2 (non-insulin-dependent) diabetes mellitus among twins. Diabetes Res Clin Pract 1994, 26:137-143.
  • [62]Weiss LA, Pan L, Abney M, Ober C: The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 2006, 38:218-222.
  • [63]Kilpelainen TO, Zillikens MC, Stancakova A, Finucane FM, Ried JS, Langenberg C, Zhang W, Beckmann JS, Luan J, Vandenput L, Styrkarsdottir U, Zhou Y, Smith AV, Zhao JH, Amin N, Vedantam S, Shin SY, Haritunians T, Fu M, Feitosa MF, Kumari M, Halldorsson BV, Tikkanen E, Mangino M, Hayward C, Song C, Arnold AM, Aulchenko YS, Oostra BA, Campbell H, et al.: Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 2011, 43:753-760.
  • [64]Dong Y, Guo T, Traurig M, Mason CC, Kobes S, Perez J, Knowler WC, Bogardus C, Hanson RL, Baier LJ: SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol Genet Metab 2011, 104:661-665.
  • [65]McCarthy JJ, Somji A, Weiss LA, Steffy B, Vega R, Barrett-Connor E, Talavera G, Glynne R: Polymorphisms of the scavenger receptor class B member 1 are associated with insulin resistance with evidence of gene by sex interaction. J Clin Endocrinol Metab 2009, 94:1789-1796.
  • [66]Tolppanen AM, Pulkkinen L, Kolehmainen M, Schwab U, Lindstrom J, Tuomilehto J, Uusitupa M, Finnish Diabetes Prevention Study Group: Tenomodulin is associated with obesity and diabetes risk: the Finnish diabetes prevention study. Obesity (Silver Spring) 2007, 15:1082-1088.
  文献评价指标  
  下载次数:27次 浏览次数:19次