BMC Genomics | |
Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae | |
Chengming Tian2  Shuxiao Xiao2  Steven J Klosterman1  Jie Ma3  Yonglin Wang2  Dianguang Xiong2  | |
[1] United States Department of Agriculture-Agricultural Research Service, Salinas, CA, USA;The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China;School of Information Science and Technology, Beijing Forestry University, Beijing, China | |
关键词: Alternative splicing; Gene expression; Transcriptome; RNA-Seq; Microsclerotia development; Verticillium dahliae; | |
Others : 1217335 DOI : 10.1186/1471-2164-15-324 |
|
received in 2013-08-27, accepted in 2014-04-22, 发布年份 2014 | |
【 摘 要 】
Background
Verticillium dahliae is a soil-borne fungus that causes vascular wilt diseases in a wide range of plant hosts. V. dahliae produces multicelled, melanized resting bodies, also known as microsclerotia (MS) that can survive for years in the soil. The MS are the primary source of infection of the Verticillium disease cycle. Thus, MS formation marks an important event in the disease cycle of V. dahliae.
Results
In this study, next generation sequencing technology of RNA-Seq was employed to investigate the global transcriptomic dynamics of MS development to identify differential gene expression at several stages of MS formation in strain XS11 of V. dahliae, isolated from smoke tree. We observed large-scale changes in gene expression during MS formation, such as increased expression of genes involved in protein metabolism and carbohydrate metabolism. Genes involved in glycolytic pathway and melanin biosynthesis were dramatically up-regulated in MS. Cluster analyses revealed increased expression of genes encoding products involved in primary metabolism and stress responses throughout MS development. Differential expression of ubiquitin-dependent protein catabolism and cell death-associated genes during MS development were revealed. Homologs of genes located in the lineage-specific (LS) regions of V. dahliae strain VdLs.17, were either not expressed or showed low expression. Furthermore, alternative splicing (AS) events were analyzed, revealing that over 95.0% AS events involve retention of introns (RI).
Conclusions
These data reveal the dynamics of transcriptional regulation during MS formation and were used to construct a comprehensive high-resolution gene expression map. This map provides a key resource for understanding the biology and molecular basis of MS development of V. dahliae.
【 授权许可】
2014 Xiong et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150706054940189.pdf | 3578KB | download | |
Figure 9. | 58KB | Image | download |
Figure 8. | 54KB | Image | download |
Figure 7. | 167KB | Image | download |
Figure 6. | 94KB | Image | download |
Figure 5. | 106KB | Image | download |
Figure 4. | 67KB | Image | download |
Figure 3. | 127KB | Image | download |
Figure 2. | 45KB | Image | download |
Figure 1. | 38KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV: Diversity, pathogenicity, and management of Verticillium Species. Annu Rev Phytopathol 2009, 47:39-62.
- [2]Fradin EF, Thomma BP: Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 2006, 7:71-86.
- [3]Wang Y, Xiao S, Xiong D, Tian C: Genetic transformation, infection process and qPCR quantification of Verticillium dahliae on smoke-tree Cotinus coggygria. Australasian Plant Pathol 2013, 42:33-41.
- [4]Hawke MA, Lazarovits G: Production and manipulation of individual microsclerotia of Verticillium dahliae for use in studies of survival. Phytopathology 1994, 84:883-890.
- [5]Bell AA, Wheeler MH: Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 1986, 24:411-451.
- [6]Wilhelm S: Longevity of Verticillium wilt fungus in the laboratory and the field. Phytopathology 1955, 45:180-181.
- [7]Pegg G, Brady B: Verticillium Wilts. Wallingford, Oxfordshire: CABI Publishing; 2002.
- [8]Griffiths DA: The fine structure of developing microsclerotia of Verticillium dahliae Kleb. Arch Mikrobiol 1970, 74:207-212.
- [9]Perry JW, Evert RF: Structure of microsclerotia of Verticillium dahliae in roots of ‘Russett Burbank’ potatoes. Can J Bot 1982, 62:396-401.
- [10]Wheeler MH, Tolmsoff WJ, Meola S: Ultrastructure of melanin formation in Verticillium dahliae with (+)-scytalone as a biosynthetic intermediate. Can J Microbiol 1976, 22:702-711.
- [11]Griffiths DA: The fine structure of Verticillium dahliae Kleb. colonizing cellophane. Can J Microbiol 1971, 17:79-81.
- [12]Klimes A, Amyotte SG, Grant S, Kang S, Dobinson KF: Microsclerotia development in Verticillium dahliae: Regulation and differential expression of the hydrophobin gene VDH1. Fungal Genet Biol 2008, 45:1525-1532.
- [13]Bell AA, Puhalla JE, Tolmsoff WJ, Stipanovic RD: Use of mutants to establish (+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae. Can J Microbiol 1976, 22:787-799.
- [14]Wheeler MH, Tolmsoff WJ, Bell AA, Mollenhauer HH: Ultrastructural and chemical distinction of melanins formed by Verticillium dahliae from (+)-scytalone, 1,8-dihydroxynaphthalene, catechol, and L-3,4-dihydroxyphenylalanine. Can J Microbiol 1978, 24:289-297.
- [15]Wheeler MH: Comparisons of fungal melanin biosynthesis in ascomycetous, imperfect and basidiomycetous fungi. Trans Br Mycol Soc 1983, 81:29-36.
- [16]Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM: Molecular signatures of G-protein-coupled receptors. Nature 2013, 494:185-194.
- [17]Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O: Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 1995, 377:3-174.
- [18]Diatchenko L, Lukyanov S, Lau YF, Siebert PD: Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 1999, 303:349-380.
- [19]Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD: Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 1996, 93:6025-6030.
- [20]Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene expression. Science 1995, 270:484-487.
- [21]Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K: Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 2000, 18:630-634.
- [22]Torres TT, Metta M, Ottenwalder B, Schlotterer C: Gene expression profiling by massively parallel sequencing. Genome Res 2008, 18:172-177.
- [23]Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R: Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 2002, 1:95-104.
- [24]Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320:1344-1349.
- [25]Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O'Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321:956-960.
- [26]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18:1509-1517.
- [27]Mardis ER: The impact of next-generation sequencing technology on genetics. Trends Genet 2008, 24:133-141.
- [28]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
- [29]MacLean D, Jones JDG, Studholme DJ: Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 2009, 7:287-296.
- [30]Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G, Snyder M: Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res 2010, 20:1451-1458.
- [31]Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S: Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 2011, 21:1328-1338.
- [32]Nagalakshmi U, Waern K, Snyder M: RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol 2010, 89:4.11.1-4.11.13.
- [33]Metzker ML: Sequencing technologies- the next generation. Nat Rev Genet 2010, 11:31-46.
- [34]Guida A, Lindstadt C, Maguire SL, Ding C, Higgins DG, Corton NJ, Berriman M, Butler G: Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genomics 2011, 12:628. BioMed Central Full Text
- [35]Riccombeni A, Butler G: Role of Genomics and RNA-seq in Studies of Fungal Virulence. Curr Fungal Infect Rep 2012, 6:267-274.
- [36]Zhao C, Waalwijk C, de Wit PJ, Tang D, van der Lee T: RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics 2013, 14:21. BioMed Central Full Text
- [37]Teichert I, Wolff G, Kuck U, Nowrousian M: Combining laser microdissection and RNA-seq toChart the transcriptional landscape of fungal development. BMC Genomics 2012, 13:511. BioMed Central Full Text
- [38]Gibbons JG, Beauvais A, Beau R, McGary KL, Latge JP, Rokas A: Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 2012, 11:68-78.
- [39]Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ: Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2012, 8:e1002514.
- [40]Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ: Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 2011, 7:e1002137.
- [41]de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA, Thomma BP: Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 2013, 23:1271-1282.
- [42]Neumann MJ, Dobinson KF: Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet Biol 2003, 38:54-62.
- [43]Duressa D, Anchieta A, Chen D, Klimes A, Garcia-Pedrajas MD, Dobinson KF, Klosterman SJ: RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae. BMC Genomics 2013, 14:607. BioMed Central Full Text
- [44]Gao F, Zhou B, Li G, Jia P, Li H, Zhao Y, Zhao P, Xia G, Guo H: A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS One 2010, 5:e15319.
- [45]Klimes A, Dobinson KF: A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol 2006, 43:283-294.
- [46]Rauyaree P, Ospina-Giraldo MD, Kang S, Bhat RG, Subbarao KV, Grant SJ, Dobinson KF: Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr Genet 2005, 48:109-116.
- [47]Tzima AK, Paplomatas EJ, Tsitsigiannis DI, Kang S: The G protein beta subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genet Biol 2012, 49:271-283.
- [48]Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV: Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One 2011, 6:e28341.
- [49]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
- [50]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34:374-378.
- [51]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628.
- [52]Hochstrasser M: Origin and function of ubiquitin-like proteins. Nature 2009, 458:422-429.
- [53]Ohsumi Y: Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001, 2:211-216.
- [54]Klionsky DJ: Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007, 8:931-937.
- [55]Glass NL, Dementhon K: Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 2006, 9:553-558.
- [56]Paoletti M, Clave C: The fungus-specific HET domain mediates programmed cell death in Podospora anserina. Eukaryot Cell 2007, 6:2001-2008.
- [57]Saupe SJ: Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 2000, 64:489-502.
- [58]Saupe SJ, Clave C, Begueret J: Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol 2000, 3:608-612.
- [59]Begueret J, Turcq B, Clave C: Vegetative incompatibility in filamentous fungi: het genes begin to talk. Trends Genet 1994, 10:441-446.
- [60]Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
- [61]Stipanovic RD, Bell AA: Pentaketide metabolites of Verticillium dahliae. 3. identification of (−)-3,4-dihydro-3,8-dihydroxy-1(2 h)-naphtalenone((−)-vermelone) as a precursor to melanin. J Org Chem 1976, 41:2468-2469.
- [62]Chumley FG, Valent B: Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 1990, 3:135-143.
- [63]Liu Q, Chen C, Shen E, Zhao F, Sun Z, Wu J: Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer. Genomics 2012, 99:178-182.
- [64]Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, Dahmane N, Davuluri RV: Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. Genome Res 2011, 21:1260-1272.
- [65]Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M: Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 2012, 22:1184-1195.
- [66]Wang B, Guo G, Wang C, Lin Y, Wang X, Zhao M, Guo Y, He M, Zhang Y, Pan L: Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 2010, 38:5075-5087.
- [67]Ho EC, Cahill MJ, Saville BJ: Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison. BMC Genomics 2007, 8:334. BioMed Central Full Text
- [68]Yassour M, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, Schroth G, Luo S, Khrebtukova I, Gnirke A, Nusbaum C, Thompson DA, Friedman N, Regev A: Ab initioConstruction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A 2009, 106:3264-3269.
- [69]Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K: Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 2013, 197:1236-1249.
- [70]Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N, International Barley Genome Sequencing C: A physical, genetic and functional sequence assembly of the barley genome. Nature 2012, 491:711-716.
- [71]Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, et al.: The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471:473-479.
- [72]Dobinson KF, Lecomte N, Lazarovits G: Production of an extracellular trypsin-like protease by the fungal plant pathogen Verticillium dahliae. Can J Microbiol 1997, 43:227-233.
- [73]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
- [74]Garber M, Grabherr MG, Guttman M, Trapnell C: Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 2011, 8:469-477.
- [75]Oliveros JC: VENNY. An interactive tool for comparing lists with Venn Diagrams. 2007. http://bioinfogp.cnb.csic.es/tools/venny/index.html webcite
- [76]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
- [77]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
- [78]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
- [79]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
- [80]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.