期刊论文详细信息
BMC Infectious Diseases
Chagasic patients are able to respond against a viral antigen from influenza virus
Concepción Judith Puerta1  John Mario González8  Manuel Carlos López5  Maria C Thomas5  Víctor Velasco2  Fernando Rosas2  Zulma Cucunuba4  Fanny Guzmán7  Adriana Cuéllar3  Natalia Bolaños8  Diana Mesa6  Paola Lasso6 
[1] Departamento de Microbiología, Facultad de Ciencias, Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Bogotá, Colombia;Fundación Clínica Abood Shaio, Diag. 115A No. 70C – 75, Bogotá, Colombia;Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7 No. 43 – 82, Bogotá, Colombia;Grupo de Parasitología, Instituto Nacional de Salud, Avenida Calle 26 No. 51 – 20, Bogotá, Colombia;Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, s/n.18100, Granada, Spain;Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Carrera 7 No. 43 – 82, Bogotá, Colombia;Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile;Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Carrera 1 No. 18A – 10, Bogotá, Colombia
关键词: Nonspecific immune-suppression;    Non-T. cruzi microbial antigen;    Chagas disease;    CD8+ T cells;   
Others  :  1159710
DOI  :  10.1186/1471-2334-12-198
 received in 2011-12-02, accepted in 2012-08-13,  发布年份 2012
PDF
【 摘 要 】

Background

Trypanosoma cruzi, the etiological agent of Chagas’ disease, is an obligate intracellular parasite which induces a CD8+ T cell immune response with secretion of cytokines and release of cytotoxic granules. Although an immune-suppressive effect of T. cruzi on the acute phase of the disease has been described, little is known about the capacity of CD8+ T cell from chronic chagasic patients to respond to a non-T. cruzi microbial antigen.

Methods

In the present paper, the frequency, phenotype and the functional activity of the CD8+ T cells specific from Flu-MP*, an influenza virus epitope, were determined in 13 chagasic patients and 5 healthy donors.

Results

The results show that Flu-MP* peptide specific CD8+ T cells were found with similar frequencies in both groups. In addition, Flu-MP* specific CD8+ T cells were distributed in the early or intermediate/late differentiation stages without showing enrichment of a specific sub-population. The mentioned Flu-MP* specific CD8+ T cells from chagasic patients were predominately TEM (CCR7- CD62L-), producing IL-2, IFNγ, CD107a/b and perforin, and did not present significant differences when compared with those from healthy donors.

Conclusions

Our results support the hypothesis that there is no CD8+ T cell nonspecific immune-suppression during chronic Chagas disease infection. Nonetheless, other viral antigens must be studied in order to confirm our findings.

【 授权许可】

   
2012 Lasso et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150409030904661.pdf 539KB PDF download
Figure 4. 81KB Image download
Figure 11. 73KB Image download
Figure 2. 52KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 11.

Figure 4.

【 参考文献 】
  • [1]WHO: Chagas disease (American trypanosomiasis) fact sheet (revised in June 2010). Wkly Epidemiol Rec 2010, 85(34):334-336.
  • [2]Schmunis GA, Yadon ZE: Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 2010, 115(1–2):14-21.
  • [3]Field V, Gautret P, Schlagenhauf P, Burchard GD, Caumes E, Jensenius M, Castelli F, Gkrania-Klotsas E, Weld L, Lopez-Velez R, et al.: Travel and migration associated infectious diseases morbidity in Europe, 2008. BMC Infect Dis 2010, 10:330. BioMed Central Full Text
  • [4]Prata A: Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 2001, 1(2):92-100.
  • [5]Teixeira AR, Hecht MM, Guimaro MC, Sousa AO, Nitz N: Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 2011, 24(3):592-630.
  • [6]Rassi A Jr, Rassi A, Marin-Neto JA: Chagas disease. Lancet 2010, 375(9723):1388-1402.
  • [7]Higuchi Mde L, Benvenuti LA, Martins Reis M, Metzger M: Pathophysiology of the heart in Chagas' disease: current status and new developments. Cardiovasc Res 2003, 60(1):96-107.
  • [8]Martin D, Tarleton R: Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection. Immunol Rev 2004, 201:304-317.
  • [9]Muller U, Sobek V, Balkow S, Holscher C, Mullbacher A, Museteanu C, Mossmann H, Simon MM: Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway. Eur J Immunol 2003, 33(1):70-78.
  • [10]Tarleton RL, Sun J, Zhang L, Postan M: Depletion of T-cell subpopulations results in exacerbation of myocarditis and parasitism in experimental Chagas' disease. Infect Immun 1994, 62(5):1820-1829.
  • [11]Albareda MC, Laucella SA, Alvarez MG, Armenti AH, Bertochi G, Tarleton RL, Postan M: Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas' disease patients. Int Immunol 2006, 18(3):465-471.
  • [12]Shin H, Wherry EJ: CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol 2007, 19(4):408-415.
  • [13]Leavey JK, Tarleton RL: Cutting edge: dysfunctional CD8+ T cells reside in nonlymphoid tissues during chronic Trypanosoma cruzi infection. J Immunol 2003, 170(5):2264-2268.
  • [14]Tzelepis F, de Alencar BC, Penido ML, Claser C, Machado AV, Bruna-Romero O, Gazzinelli RT, Rodrigues MM: Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance. J Immunol 2008, 180(3):1737-1748.
  • [15]Alvarez MG, Postan M, Weatherly DB, Albareda MC, Sidney J, Sette A, Olivera C, Armenti AH, Tarleton RL, Laucella SA: HLA Class I-T cell epitopes from trans-sialidase proteins reveal functionally distinct subsets of CD8+ T cells in chronic Chagas disease. PLoS Negl Trop Dis 2008, 2(9):e288.
  • [16]Diez H, Lopez MC, Del Carmen Thomas M, Guzman F, Rosas F, Velazco V, Gonzalez JM, Puerta C: Evaluation of IFN-gamma production by CD8 T lymphocytes in response to the K1 peptide from KMP-11 protein in patients infected with Trypanosoma cruzi. Parasit Immunol 2006, 28(3):101-105.
  • [17]Fonseca SG, Moins-Teisserenc H, Clave E, Ianni B, Nunes VL, Mady C, Iwai LK, Sette A, Sidney J, Marin ML, et al.: Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients. Microb Infect Institut Pasteur 2005, 7(4):688-697.
  • [18]Garcia F, Sepulveda P, Liegeard P, Gregoire J, Hermann E, Lemonnier F, Langlade-Demoyen P, Hontebeyrie M, Lone YC: Identification of HLA-A*0201-restricted cytotoxic T-cell epitopes of Trypanosoma cruzi TcP2beta protein in HLA-transgenic mice and patients. Microb Infect Institut Pasteur 2003, 5(5):351-359.
  • [19]Laucella SA, Postan M, Martin D, Hubby Fralish B, Albareda MC, Alvarez MG, Lococo B, Barbieri G, Viotti RJ, Tarleton RL: Frequency of interferon- gamma -producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J Infect Dis 2004, 189(5):909-918.
  • [20]Martin DL, Weatherly DB, Laucella SA, Cabinian MA, Crim MT, Sullivan S, Heiges M, Craven SH, Rosenberg CS, Collins MH, et al.: CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog 2006, 2(8):e77.
  • [21]Marañón C, Egui A, Carrilero B, Thomas MC, Pinazo MJ, Gascón J, Segovia M, López MC: Identification of HLA-A∗02:01-restricted CTL epitopes in Trypanosoma cruzi heat shock protein-70 recognized by Chagas disease patients. Microb Infect 2011, 13(12–13):1025-1032.
  • [22]Borges M, Da Silva AC, Sereno D, Ouaissi A: Peptide-based analysis of the amino acid sequence important to the immunoregulatory function of Trypanosoma cruzi Tc52 virulence factor. Immunology 2003, 109(1):147-155.
  • [23]Michelin MA, Silva JS, Cunha FQ: Inducible cyclooxygenase released prostaglandin mediates immunosuppression in acute phase of experimental Trypanosoma cruzi infection. Exp Parasitol 2005, 111(2):71-79.
  • [24]Minoprio P, Itohara S, Heusser C, Tonegawa S, Coutinho A: Immunobiology of murine T. cruzi infection: the predominance of parasite-nonspecific responses and the activation of TCRI T cells. Immunol Rev 1989, 112:183-207.
  • [25]Poncini CV, Alba Soto CD, Batalla E, Solana ME, Gonzalez Cappa SM: Trypanosoma cruzi induces regulatory dendritic cells in vitro. Infect Immun 2008, 76(6):2633-2641.
  • [26]Padilla AM, Simpson LJ, Tarleton RL: Insufficient TLR activation contributes to the slow development of CD8+ T cell responses in Trypanosoma cruzi infection. J Immunol 2009, 183(2):1245-1252.
  • [27]Krausa P, Brywka M 3rd, Savage D, Hui KM, Bunce M, Ngai JL, Teo DL, Ong YW, Barouch D, Allsop CE, et al.: Genetic polymorphism within HLA-A*02: significant allelic variation revealed in different populations. Tissue Antigens 1995, 45(4):223-231.
  • [28]Wherry EJ, Ahmed R: Memory CD8 T-cell differentiation during viral infection. J Virol 2004, 78(11):5535-5545.
  • [29]Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS, King A, Lechner F, Spina CA, et al.: Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 2002, 8(4):379-385.
  • [30]Sallusto F, Geginat J, Lanzavecchia A: Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 2004, 22:745-763.
  • [31]Klenerman P, Zinkernagel RM: Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998, 394(6692):482-485.
  • [32]Britten CM, Janetzki S, Ben-Porat L, Clay TM, Kalos M, Maecker H, Odunsi K, Pride M, Old L, Hoos A, et al.: Harmonization guidelines for HLA-peptide multimer assays derived from results of a large scale international proficiency panel of the Cancer Vaccine Consortium. Canc Immunol Immunother 2009, 58(10):1701-1713.
  • [33]Hoji A, Rinaldo CR Jr: Human CD8+ T cells specific for influenza A virus M1 display broad expression of maturation-associated phenotypic markers and chemokine receptors. Immunology 2005, 115(2):239-245.
  • [34]Lasso P, Mesa D, Cuellar A, Guzman F, Bolanos N, Rosas F, Velasco V, Thomas Mdel C, Lopez MC, Gonzalez JM, et al.: Frequency of specific CD8+ T cells for a promiscuous epitope derived from Trypanosoma cruzi KMP-11 protein in chagasic patients. Parasite Immunol 2010, 32(7):494-502.
  • [35]Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A, Ogg GS, Spiegel HM, Conlon C, Spina CA, et al.: HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 2000, 192(1):63-75.
  • [36]Dauby N, Alonso-Vega C, Suarez E, Flores A, Hermann E, Cordova M, Tellez T, Torrico F, Truyens C, Carlier Y: Maternal infection with Trypanosoma cruzi and congenital Chagas disease induce a trend to a type 1 polarization of infant immune responses to vaccines. PLoS Negl Trop Dis 2009, 3(12):e571.
  • [37]Bern C, Montgomery SP, Herwaldt BL, Rassi A Jr, Marin-Neto JA, Dantas RO, Maguire JH, Acquatella H, Morillo C, Kirchhoff LV, et al.: Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA 2007, 298(18):2171-2181.
  • [38]Hunt SA: ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 2005, 46(6):e1-e82.
  • [39]Bednarek MA, Sauma SY, Gammon MC, Porter G, Tamhankar S, Williamson AR, Zweerink HJ: The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. J Immunol 1991, 147(12):4047-4053.
  • [40]Chaves F, Calvo JC, Carvajal C, Rivera Z, Ramirez L, Pinto M, Trujillo M, Guzman F, Patarroyo ME: Synthesis, isolation and characterization of Plasmodium falciparum antigenic tetrabranched peptide dendrimers obtained by thiazolidine linkages. J Pept Res Offic J Am Pept Soc 2001, 58(4):307-316.
  • [41]Parham P, Brodsky FM: Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol 1981, 3(4):277-299.
  • [42]Bunce M, O'Neill CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ, Welsh KI: Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 1995, 46(5):355-367.
  • [43]Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, Hoff ST, Andersen P, Reed SG, Morris SL, et al.: Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007, 13(7):843-850.
  文献评价指标  
  下载次数:17次 浏览次数:3次