| BMC Clinical Pharmacology | |
| Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome | |
| Benoît Foligné1  Bruno Pot1  Evie De Brandt3  Peter Vandamme3  Sébastien Massart2  Jérôme Breton1  | |
| [1] Bactéries Lactiques & Immunité des Muqueuses, Centre d‘Infection et d’Immunité de Lille, Institut Pasteur de Lille, U1019, UMR 8204, Université Lille Nord de France, 1 rue du Pr Calmette, Lille cedex, BP 245, F-59019, France;DNAVision SA, avenue George Lemaitre 25, Charleroi B-6041, Belgium;Laboratory of Microbiology, Faculty of Sciences, Ledeganckstraat 35, Ghent B-9000, Belgium | |
| 关键词: Denaturing gradient gel electrophoresis (DGGE); Turicibacter; 16S pyrosequencing; Mice; Gut microbiota; Heavy metal exposure; | |
| Others : 860468 DOI : 10.1186/2050-6511-14-62 |
|
| received in 2013-10-13, accepted in 2013-12-04, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The gut microbiota is critical for intestinal homeostasis. Recent studies have revealed the links between different types of dysbiosis and diseases inside and outside the intestine. Environmental exposure to pollutants (such as heavy metals) can also impair various physiological functions for good health. Here, we studied the impact of up to 8 weeks of oral lead and cadmium ingestion on the composition of the murine intestinal microbiome.
Results
Pyrosequencing of 16S RNA sequences revealed minor but specific changes in bacterial commensal communities (at both family and genus levels) following oral exposure to the heavy metals, with notably low numbers of Lachnospiraceae and high numbers levels of Lactobacillaceae and Erysipelotrichaceacae (mainly due to changes in Turicibacter spp), relative to control animals.
Conclusions
Non-absorbed heavy metals have a direct impact on the gut microbiota. In turn, this may impact the alimentary tract and overall gut homeostasis. Our results may enable more accurate assessment of the risk of intestinal disease associated with heavy metal ingestion.
【 授权许可】
2013 Breton et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140724183942802.pdf | 1223KB | ||
| 70KB | Image | ||
| 29KB | Image | ||
| 83KB | Image | ||
| 58KB | Image |
【 图 表 】
【 参考文献 】
- [1]Zalups RK, Ahmad S: Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 2003, 186(3):163-188.
- [2]James HM, Hilburn ME, Blair JA: Effects of meals and meal times on uptake of lead from the gastrointestinal tract in humans. Hum Toxicol 1985, 4(4):401-407.
- [3]O’Hara AM, Shanahan F: The gut flora as a forgotten organ. EMBO 2006, 7(7):688-693. Rep
- [4]Sekirov I, Russell SL, Antunes LC, Finlay BB: Gut microbiota in health and disease. Physiol Rev 2010, 90(3):859-904.
- [5]Leser TD, Molbak L: Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 2009, 11(9):2194-2206.
- [6]Nicholson JK, Holmes E, Wilson ID: Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005, 3(5):431-438.
- [7]Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O, et al.: Colonization-induced host-gut microbial metabolic interaction. MBio 2011, 2(2):e00271-10.
- [8]DuPont AW, DuPont HL: The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol 2011, 8(9):523-531.
- [9]Clemente JC, Ursell LK, Parfrey LW, Knight R: The impact of the gut microbiota on human health: an integrative view. Cell 2012, 148(6):1258-1270.
- [10]Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R: Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489(7415):220-230.
- [11]Breton J, Le Clère K, Daniel C, Sauty M, Nakab L, Chassat T, Dewulf J, Penet S, Carnoy C, Thomas P, et al.: Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Arch Toxicol 2013, 87(10):1787-1795.
- [12]Matsuda K, Tsuji H, Asahara T, Matsumoto K, Takada T, Nomoto K: Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol 2009, 75(7):1961-1969.
- [13]Andersson AF, Riemann L, Bertilsson S: Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 2010, 4(2):171-181.
- [14]De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010, 107(33):14691-14696.
- [15]Yu Z, Morrison M: Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004, 70(8):4800-4806.
- [16]Temmerman R, Scheirlinck I, Huys G, Swings J: Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol 2003, 69(1):220-226.
- [17]Vanhoutte T, Huys G, De Brandt E, Swings J: Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 2004, 48(3):437-446.
- [18]Fazeli M, Hassanzadeh P, Alaei S: Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum Exp Toxicol 2011, 30(2):152-159.
- [19]Lepage P, Häsler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, Ott S, Kupcinskas L, Doré J, Raedler A, Schreiber S: Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011, 141(1):227-236.
- [20]Brinkman BM, Hildebrand F, Kubica M, Goosens D, Del Favero J, Declercq W, Raes J, Vandenabeele P: Caspase deficiency alters the murine gut microbiome. Cell Death Dis 2011, 2:e220.
- [21]Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, Engel M, Hai B, Hainzl E, Heider S, et al.: Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J 2012, 6(11):2091-2106.
- [22]Falk A, Olsson C, Ahrné S, Molin G, Adawi D, Jeppsson B: Ileal pelvic pouch microbiota from two former ulcerative colitis patients, analysed by DNA-based methods, were unstable over time and showed the presence of Clostridium perfringens. Scand J Gastroenterol 2007, 42(8):973-985.
- [23]Bosshard PP, Zbinden R, Altwegg M: Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. Int J Syst Evol Microbiol 2002, 52(Pt4):1263-1266.
- [24]Werner T, Wagner SJ, Martínez I, Walter J, Chang JS, Clavel T, Kisling S, Schuemann K, Haller D: Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 2011, 60(3):325-333.
- [25]Presley LL, Wei B, Braun J, Borneman J: Bacteria associated with immunoregulatory cells in mice. Appl Environ Microbiol 2010, 76(3):936-941.
- [26]Po C, Klaassens ES, Durkin AS, Harkins DM, Foster L, McCorrison J, Torralba M, Nelson KE, Morrison M: Draft genome sequence of Turicibacter sanguinis PC909, isolated from human feces. J Bacteriol 2011, 193(5):1288-1289.
- [27]Upreti RK, Shrivastava R, Chaturvedi UC: Gut microflora & toxic metals: chromium as a model. Indian J Med Res 2004, 119(2):49-59.
- [28]Lemon KP, Armitage GC, Relman DA, Fischbach MA: Microbiota-targeted therapies: an ecological perspective. Sci Transl Med 2012, 4(137):137. rv5
- [29]Quigley EM: Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res 2010, 61(3):213-218.
- [30]Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, Thomas P, Pot B, Foligné B: Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 2013, 222(2):132-138.
- [31]Rappaport SM, Smith MT: Epidemiology environment and disease risks. Science 2010, 330(6003):460-461.
PDF