期刊论文详细信息
BMC Genomics
The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration
J David Clark2  Cecilia Flores3  Grégory Scherrer1  Gary Peltz2  Sarah A Low1  Peyman Sahbaie2  Yuan Sun2  Ming Zheng2  De-Yong Liang2 
[1] Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford, USA;Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, USA;Department of Psychiatry, McGill University, Montreal, Canada
关键词: Addiction;    Pain;    Opioid;    Mapping;    Genetics;   
Others  :  1217253
DOI  :  10.1186/1471-2164-15-345
 received in 2013-12-31, accepted in 2014-04-24,  发布年份 2014
PDF
【 摘 要 】

Background

Opioids are the cornerstone of treatment for moderate to severe pain, but chronic use leads to maladaptations that include: tolerance, dependence and opioid-induced hyperalgesia (OIH). These responses limit the utility of opioids, as well as our ability to control chronic pain. Despite decades of research, we have no therapies or proven strategies to overcome this problem. However, murine haplotype based computational genetic mapping and a SNP data base generated from analysis of whole-genome sequence data (whole-genome HBCGM), provides a hypothesis-free method for discovering novel genes affecting opioid maladaptive responses.

Results

Whole genome-HBCGM was used to analyze phenotypic data on morphine-induced tolerance, dependence and hyperalgesia obtained from 23 inbred strains. The robustness of the genetic mapping results was analyzed using strain subsets. In addition, the results of analyzing all of the opioid-related traits together were examined. To characterize the functional role of the leading candidate gene, we analyzed transgenic animals, mRNA and protein expression in behaviorally divergent mouse strains, and immunohistochemistry in spinal cord tissue. Our mapping procedure identified the allelic pattern within the netrin-1 receptor gene (Dcc) as most robustly associated with OIH, and it was also strongly associated with the combination of the other maladaptive opioid traits analyzed. Adult mice heterozygous for the Dcc gene had significantly less tendency to develop OIH, become tolerant or show evidence of dependence after chronic exposure to morphine. The difference in opiate responses was shown not to be due to basal or morphine-stimulated differences in the level of Dcc expression in spinal cord tissue, and was not associated with nociceptive neurochemical or anatomical alterations in the spinal cord or dorsal root ganglia in adult animals.

Conclusions

Whole-genome HBCGM is a powerful tool for identifying genes affecting biomedical traits such as opioid maladaptations. We demonstrate that Dcc affects tolerance, dependence and OIH after chronic opioid exposure, though not through simple differences in expression in the adult spinal cord.

【 授权许可】

   
2014 Liang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705223619213.pdf 3049KB PDF download
Figure 6. 79KB Image download
Figure 5. 59KB Image download
Figure 4. 92KB Image download
Figure 3. 45KB Image download
Figure 2. 59KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Jamison RN, Edwards RR: Risk factor assessment for problematic use of opioids for chronic pain. Clin Neuropsychol 2013, 27(1):60-80.
  • [2]Snidvongs S, Mehta V: Recent advances in opioid prescription for chronic non-cancer pain. Postgrad Med J 2012, 88(1036):66-72.
  • [3]Angst MS, Clark JD: Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 2006, 104(3):570-587.
  • [4]Huxtable CA, Roberts LJ, Somogyi AA, MacIntyre PE: Acute pain management in opioid-tolerant patients: a growing challenge. Anaesth Intensive Care 2011, 39(5):804-823.
  • [5]Pasero C, McCaffery M: Opioid-induced hyperalgesia. J Perianesth Nurs 2012, 27(1):46-50.
  • [6]Angst MS, Lazzeroni LC, Phillips NG, Drover DR, Tingle M, Ray A, Swan GE, Clark JD: Aversive and reinforcing opioid effects: a pharmacogenomic twin study. Anesthesiology 2012, 117(1):22-37.
  • [7]Angst MS, Phillips NG, Drover DR, Tingle M, Galinkin JL, Christians U, Swan GE, Lazzeroni LC, Clark JD: Opioid pharmacogenomics using a twin study paradigm: methods and procedures for determining familial aggregation and heritability. Twin Res Hum Genet 2010, 13(5):412-425.
  • [8]Chu LF, Liang DY, Li X, Sahbaie P, D'Arcy N, Liao G, Peltz G, David Clark J: From mouse to man: the 5-HT3 receptor modulates physical dependence on opioid narcotics. Pharmacogenet Genomics 2009, 19(3):193-205.
  • [9]Kest B, Hopkins E, Palmese CA, Adler M, Mogil JS: Genetic variation in morphine analgesic tolerance: a survey of 11 inbred mouse strains. Pharmacol Biochem Behav 2002, 73(4):821-828.
  • [10]Kest B, Palmese CA, Juni A, Chesler EJ, Mogil JS: Mapping of a quantitative trait locus for morphine withdrawal severity. Mamm Genome 2004, 15(8):610-617.
  • [11]Liang DY, Guo T, Liao G, Kingery WS, Peltz G, Clark JD: Chronic pain and genetic background interact and influence opioid analgesia, tolerance, and physical dependence. Pain 2006, 121(3):232-240.
  • [12]Liang DY, Li X, Clark JD: 5-hydroxytryptamine type 3 receptor modulates opioid-induced hyperalgesia and tolerance in mice. Anesthesiology 2011, 114(5):1180-1189.
  • [13]Liang DY, Liao G, Lighthall GK, Peltz G, Clark DJ: Genetic variants of the P-glycoprotein gene Abcb1b modulate opioid-induced hyperalgesia, tolerance and dependence. Pharmacogenet Genomics 2006, 16(11):825-835.
  • [14]Liang DY, Liao G, Wang J, Usuka J, Guo Y, Peltz G, Clark JD: A genetic analysis of opioid-induced hyperalgesia in mice. Anesthesiology 2006, 104(5):1054-1062.
  • [15]Chu LF, Cun T, Ngai LK, Kim JE, Zamora AK, Young CA, Angst MS, Clark DJ: Modulation of remifentanil-induced postinfusion hyperalgesia by the beta-blocker propranolol in humans. Pain 2012, 153(5):974-981.
  • [16]Kest B, Smith SB, Schorscher-Petcu A, Austin JS, Ritchie J, Klein G, Rossi GC, Fortin A, Mogil JS: Gnao1 (G alphaO protein) is a likely genetic contributor to variation in physical dependence on opioids in mice. Neuroscience 2009, 162(4):1255-1264.
  • [17]Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, Ferris MT, Frelinger JA, Heise M, Frieman MB, Gralinski LE, Bell TA, Didion JD, Hua K, Nehrenberg DL, Powell CL, Steigerwalt J, Xie Y, Kelada SN, Collins FS, Yang IV, Schwartz DA, Branstetter LA, Chesler EJ, Miller DR, Spence J, Liu EY, McMillan L, Sarkar A, Wang J, et al.: Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 2011, 21(8):1213-1222.
  • [18]Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA: High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 2012, 190(2):437-447.
  • [19]Baker EJ, Jay JJ, Philip VM, Zhang Y, Li Z, Kirova R, Langston MA, Chesler EJ: Ontological discovery environment: a system for integrating gene-phenotype associations. Genomics 2009, 94(6):377-387.
  • [20]Zheng M, Dill D, Peltz G: A better prognosis for genetic association studies in mice. Trends Genet 2012, 28(2):62-69.
  • [21]Horn KE, Glasgow SD, Gobert D, Bull SJ, Luk T, Girgis J, Tremblay ME, McEachern D, Bouchard JF, Haber M, Hamel E, Krimpenfort P, Murai KK, Berns A, Doucet G, Chapman CA, Ruthazer ES, Kennedy TE: DCC expression by neurons regulates synaptic plasticity in the adult brain. Cell Rep 2013, 3(1):173-185.
  • [22]Kim JH, Lavan D, Chen N, Flores C, Cooper H, Lawrence AJ: Netrin-1 receptor-deficient mice show age-specific impairment in drug-induced locomotor hyperactivity but still self-administer methamphetamine. Psychopharmacology (Berl) 2013, 230(4):607-616.
  • [23]Manitt C, Eng C, Pokinko M, Ryan RT, Torres-Berrio A, Lopez JP, Yogendran SV, Daubaras MJ, Grant A, Schmidt ER, Tronche F, Krimpenfort P, Cooper HM, Pasterkamp RJ, Kolb B, Turecki G, Wong TP, Nestler EJ, Giros B, Flores C: dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Transl Psychiatry 2013, 3:e338.
  • [24]Srour M, Riviere JB, Pham JM, Dube MP, Girard S, Morin S, Dion PA, Asselin G, Rochefort D, Hince P, Diab S, Sharafaddinzadeh N, Chouinard S, Theoret H, Charron F, Rouleau GA: Mutations in DCC cause congenital mirror movements. Science 2010, 328(5978):592.
  • [25]Yetnikoff L, Eng C, Benning S, Flores C: Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. Eur J Neurosci 2010, 31(7):1292-1302.
  • [26]Bradford D, Cole SJ, Cooper HM: Netrin-1: diversity in development. Int J Biochem Cell Biol 2009, 41(3):487-493.
  • [27]Rajasekharan S, Kennedy TE: The netrin protein family. Genome Biol 2009, 10(9):239. BioMed Central Full Text
  • [28]Bernet A, Fitamant J: Netrin-1 and its receptors in tumour growth promotion. Expert Opin Ther Targets 2008, 12(8):995-1007.
  • [29]Castets M, Mehlen P: Netrin-1 role in angiogenesis: to be or not to be a pro-angiogenic factor? Cell Cycle 2010, 9(8):1466-1471.
  • [30]Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA: Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997, 386(6627):796-804.
  • [31]Sahbaie P, Shi X, Li X, Liang D, Guo TZ, Qiao Y, Yeomans DC, Kingery WS, David Clark J: Preprotachykinin-A gene disruption attenuates nociceptive sensitivity after opioid administration and incision by peripheral and spinal mechanisms in mice. J Pain 2012, 13(10):997-1007.
  • [32]Yetnikoff L, Labelle-Dumais C, Flores C: Regulation of netrin-1 receptors by amphetamine in the adult brain. Neuroscience 2007, 150(4):764-773.
  • [33]Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B: Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990, 247(4938):49-56.
  • [34]Mehlen P, Delloye-Bourgeois C, Chedotal A: Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer 2011, 11(3):188-197.
  • [35]Goldman JS, Ashour MA, Magdesian MH, Tritsch NX, Harris SN, Christofi N, Chemali R, Stern YE, Thompson-Steckel G, Gris P, Glasgow SD, Grutter P, Bouchard JF, Ruthazer ES, Stellwagen D, Kennedy TE: Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. J Neurosci 2013, 33(44):17278-17289.
  • [36]Dillon AK, Fujita SC, Matise MP, Jarjour AA, Kennedy TE, Kollmus H, Arnold HH, Weiner JA, Sanes JR, Kaprielian Z: Molecular control of spinal accessory motor neuron/axon development in the mouse spinal cord. J Neurosci 2005, 25(44):10119-10130.
  • [37]Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C: The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J Neurosci 2011, 31(23):8381-8394.
  • [38]Shewan D, Dwivedy A, Anderson R, Holt CE: Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nat Neurosci 2002, 5(10):955-962.
  • [39]Izzi L, Charron F: Midline axon guidance and human genetic disorders. Clin Genet 2011, 80(3):226-234.
  • [40]Flores C: Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. J Psychiatry Neurosci 2011, 36(5):296-310.
  • [41]Hyman SE, Malenka RC, Nestler EJ: Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006, 29:565-598.
  • [42]Ferrini F, Trang T, Mattioli TA, Laffray S, Del'Guidice T, Lorenzo LE, Castonguay A, Doyon N, Zhang W, Godin AG, Mohr D, Beggs S, Vandal K, Beaulieu JM, Cahill CM, Salter MW, De Koninck Y: Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci 2013, 16(2):183-192.
  • [43]Perkins DI, Trudell JR, Crawford DK, Alkana RL, Davies DL: Targets for ethanol action and antagonism in loop 2 of the extracellular domain of glycine receptors. J Neurochem 2008, 106(3):1337-1349.
  • [44]King T, Ossipov MH, Vanderah TW, Porreca F, Lai J: Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals 2005, 14(4):194-205.
  • [45]Ossipov MH, Lai J, Vanderah TW, Porreca F: Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sci 2003, 73(6):783-800.
  • [46]Shi M, Guo C, Dai JX, Ding YQ: DCC is required for the tangential migration of noradrenergic neurons in locus coeruleus of mouse brain. Mol Cell Neurosci 2008, 39(4):529-538.
  • [47]Pertovaara A: The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol 2013, 716(1–3):2-7.
  • [48]Burgess RW, Jucius TJ, Ackerman SL: Motor axon guidance of the mammalian trochlear and phrenic nerves: dependence on the netrin receptor Unc5c and modifier loci. J Neurosci 2006, 26(21):5756-5766.
  • [49]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53(1):55-63.
  • [50]Poree LR, Guo TZ, Kingery WS, Maze M: The analgesic potency of dexmedetomidine is enhanced after nerve injury: a possible role for peripheral alpha2-adrenoceptors. Anesth Analg 1998, 87(4):941-948.
  • [51]Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, et al.: Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011, 477(7364):289-294.
  • [52]Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, et al.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456(7218):53-59.
  • [53]Peltz G, Zaas AK, Zheng M, Solis NV, Zhang MX, Liu HH, Hu Y, Boxx GM, Phan QT, Dill D, Filler SG: Next-generation computational genetic analysis: multiple complement alleles control survival after Candida albicans infection. Infect Immun 2011, 79(11):4472-4479.
  • [54]Sun Y, Li XQ, Sahbaie P, Shi XY, Li WW, Liang DY, Clark JD: miR-203 regulates nociceptive sensitization after incision by controlling phospholipase A2 activating protein expression. Anesthesiology 2012, 117(3):626-638.
  • [55]Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C: Peri-pubertal emergence of UNC-5 homologue expression by dopamine neurons in rodents. PLoS One 2010, 5(7):e11463.
  • [56]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 1995, Series B 57(1):289-300.
  文献评价指标  
  下载次数:42次 浏览次数:17次