期刊论文详细信息
BMC Evolutionary Biology
Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis
Ary A Hoffmann1  Kate DL Umbers5  Yoshinori Endo2  Adam D Miller1  Michael A Nash3  Rachel A Slatyer4 
[1] Department of Genetics, The University of Melbourne, Parkville 3010, VIC, Australia;Wildlife Research Centre, Kyoto University, Sakyo 606-8203, Kyoto, Japan;Entomology Unit, South Australian Research and Development Institute, Urrbrae 5064, SA, Australia;Bio21 Molecular Sciences Institute, The University of Melbourne, Parkville 3010, VIC, Australia;Centre for Evolutionary Biology, University of Western Australia, Crawley 6009, WA, Australia
关键词: Alpine;    Population genetics;    Phylogeography;    Kosciuscola tristis;    Grasshopper;    Australian alps;   
Others  :  1117921
DOI  :  10.1186/s12862-014-0204-1
 received in 2014-05-26, accepted in 2014-09-17,  发布年份 2014
PDF
【 摘 要 】

Background

Mountain landscapes are topographically complex, creating discontinuous ‘islands’ of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia’s high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia’s mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted).

Results

We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance.

Conclusions

Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia’s alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

【 授权许可】

   
2014 Slatyer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206012855142.pdf 1734KB PDF download
Figure 5. 52KB Image download
Figure 4. 39KB Image download
Figure 3. 21KB Image download
Figure 2. 31KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gomory D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, Van der Knaap WO, Petit RJ, De Beaulieu JL: A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 2006, 171:199-221.
  • [2]Schoville SD, Roderick GK, Kavanaugh KD: Testing the ‘Pleistocene species pump’ in alpine habitats: lineage diversification of flightless ground beetles (Coleoptera: Carabidae: Nebria) in relation to altitudinal zonation. Biol J Linn Soc 2012, 107:95-111.
  • [3]Rubridge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C: Climate-induced range contraction drives genetic erosion in an alpine mammal. Nature Clim Change 2012, 2(4):285-288.
  • [4]DeChaine EG, Martin AP: Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA. Evolution 2004, 58(1):113-127.
  • [5]Galbreath KE, Hafner DJ, Zamudio KR: When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Evolution 2009, 63(11):2848-2863.
  • [6]DeChaine EG, Martin AP: Historical biogeography of two alpine butterflies in the Rocky Mountains: broad-scale concordance and local-scale discordance. J Biogeogr 2005, 32:1943-1956.
  • [7]Knowles LL: Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 2000, 54(4):1337-1348.
  • [8]Schönswetter P, Stehlik I, Holderegger R, Tribsch A: Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 2005, 14(11):3547-3555.
  • [9]VanDyke KA, Kazmer DJ, Lockwood JA: Genetic structure of the alpine grasshopper, Melanoplus alpinus (Orthoptera: Acrididae). Ann Entomol Soc Am 2004, 97(2):276-285.
  • [10]Knowles LL: Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Mol Ecol 2001, 10(3):691-701.
  • [11]Schoville SD, Roderick GK: Alpine biogeography of Parnassian butterflies during Quaternary climate cycles in Northern America. Mol Ecol 2009, 18(16):3471-3485.
  • [12]Schoville SD, Roderick GK: Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae) in alpine habitats of California. BMC Evol Biol 2010, 10:163. BioMed Central Full Text
  • [13]Schmitt T: Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool 2007, 4:11. BioMed Central Full Text
  • [14]Costin AB: The Alps in a global perspective. In The Scientific Significance of the Australian Alps. Edited by Good R. Australian Alps National Parks Liaison Committee, Canberra, ACT; 1989:7-19.
  • [15]Frakes LA, McGowran B, Bowler JM: Evolution of Australian environments. In Fauna of Australia V1A. Edited by Walton DW, Dyne GR. Australian Government Public Service, Bureau of Flora and Fauna, Canberra, Australia; 1987.
  • [16]Mark BG, Harrison SP, Spessa A, New M, Evans DJA, Helmens KF: Tropical snowline changes at the last glacial maximum: A global assessment. Quatern Int 2005, 138–139:168-201.
  • [17]Endo Y, Nash MA, Hoffmann AA, Slatyer RA, Miller AD: Comparative phylogeography of alpine invertebrates indicates deep lineage diversification and historical refugia in the Australian Alps.J Biogeogr 2014, in press.
  • [18]Griffin PC, Hoffmann AA: Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges. Ann Bot 2014, 113(6):953-965.
  • [19]Barrows TT, Stone JO, Fifield LK, Cresswell RG: Late Pleistocene glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quaternary Res 2001, 55:179-189.
  • [20]Barrows TT, Stone JO, Fifield LK, Cresswell RG: The timing of the Last Glacial Maximum in Australia. Quaternary Sci Rev 2002, 21(1–3):159-173.
  • [21]Koumoundouros T, Sumner J, Clemann N, Stuart-Fox D: Current genetic isolation and fragmentation contrasts with historical connectivity in an alpine lizard (Cyclodomorphus praealtus) threatened by climate change. Biol Conserv 2009, 142(5):992-1002.
  • [22]Chapple DG, Keogh JS, Hutchinson MN: Substantial genetic substructuring in southeastern and alpine Australia revealed by molecular phylogeography of the Egernia whitii (Lacertilia: Scincidae) species group. Mol Ecol 2005, 14(5):1279-1292.
  • [23]Mitrovski P, Heinze DA, Broome L, Hoffmann AA, Weeks AR: High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia. Mol Ecol 2007, 16(1):75-87.
  • [24]Rehn JAG: The grasshoppers and locusts (Acridoidea) of Australia. Volume III: Family Acrididae: Subfamily Cyrtacanthacridinae, Tribe Oxyini, Spathosternini, and Praxibulini. CSIRO, Melbourne, Australia; 1957.
  • [25]Tatarnic NJ, Umbers KDL, Song H: Molecular phylogeny of the Kosciuscola grasshoppers endemic to the Australian alpine and montane regions. Invertebr Syst 2013, 27(3):307-316.
  • [26]Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.
  • [27]Hewitt G: Post-glacial re-colonization of European biota. Biol J Linn Soc 1999, 68(1–2):87-112.
  • [28]Crandall ED, Taffel JF, Barber PH: High gene flow due to pelagic larval dispersal among South Pacific archipelagos in two amphidromous gastropods (Neritomorpha: Neritidae). Heredity 2010, 104:563-572.
  • [29]Nielson R, Wakeley J: Distinguishing migration from isolation. A Markov Chain Monte Carlo approach. Genetics 2001, 158:885-896.
  • [30]Hope GS: Quaternary vegetation. In History of the Australian Vegetation. Edited by Hill RS. Press Syndicate of the University of Cambridge, Cambridge; 1994:368-389.
  • [31]Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF: Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 1998, 7(4):453-464.
  • [32]Church SA, Kraus JM, Mitchell JC, Church DR, Taylor DR: Evidence for multiple pleistocene refugia in the postglacial expansion of the eastern tiger salamander, Ambystoma tigrinum tigrinum. Evolution 2003, 57(2):372-383.
  • [33]Keyghobadi N, Roland J, Strobeck C: Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Palilionidae). Mol Ecol 1999, 8(9):1481-1495.
  • [34]Keyghobadi N, Roland J, Strobeck C: Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 2005, 14(7):1897-1909.
  • [35]Britten HB, Brussard PF, Murphy DD, Ehrlich P: A test for isolation-by-distance in central Rocky Mountain and Great Basin populations of Edith’s checkerspot butterfly (Euphydryas editha). J Hered 1995, 86(3):204-210.
  • [36]Garnier S, Alibert P, Audiot P, Prieur B, Rasplus J-Y: Isolation by distance and sharp discontinuities in gene frequences: implications for the phylogeography of an alpine insect species, Carabus solieri. Mol Ecol 2004, 13:1883-1897.
  • [37]Henry P, Sim Z, Russello MA: Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: the American pika. Plos One 2012, 7(6):e39077.
  • [38]Castillo JA, Epps CW, Davis AR, Cushman SA: Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 2014, 23(4):843-856.
  • [39]Gerber AS, Templeton AR: Population sizes and within-deme movement of Trimerotropis saxatilis (Acrididae), a grasshopper with a fragmented distribution. Oecologia 1996, 105(3):343-350.
  • [40]Mount Buffalo National Park management plan. Department of Natural Resources and Environment, Victoria, East Melbourne, Victoria; 1996.
  • [41]Field R: Butterflies: identification and life history. Museum Victoria Publishing, Melbourne, Victoria; 2013.
  • [42]Whittaker JC, Harbord RM, Boxall N, Mackay I, Dawson G, Sibly RM: Likelihood-based estimation of microsatellite mutation rates. Genetics 2003, 164:781-787.
  • [43]Gallagher SJ, Greenwood DR, Taylor DR, Smith AJ, Wallace MW, Holdgate GR: The Pliocene climatic and environmental evolution of southeastern Australia: evidence from the marine and terrestrial realm. Palaeogeogr, Palaeoclimatol, Palaeoecol 2003, 193(3–4):349-382.
  • [44]Galloway RW, Kemp E: Late Cainozoic environments in Australia. In Vertebrate Zoogeography and Evolution in Australia. Edited by Archer M, Clayton G. Hesperian Press, Sydney, Australia; 1984:83-108.
  • [45]Green K, Osborne W: Wildlife of the Australian Snow Country. Sydney, NSW, Reed; 1994.
  • [46]Barrows TT, Stone JO, Fifield LK: Exposure ages for Pleistocene periglacial deposits in Australia. Quaternary Sci Rev 2004, 23(5–6):697-708.
  • [47]Beavis FC: Pleistocene glaciation on the Bogong High Plains. Aust J Sci 1959, 21:182.
  • [48]Berger D, Chobanov DP, Mayer F: Interglacial refugia and range shifts of the alpine grasshopper Stenobothrus cotticus (Orthoptera: Acrididae: Gomphocerinae). Org Divers Evol 2010, 10(2):123-133.
  • [49]Hafner DJ, Sullivan RM: Historical and ecological biogeography of nearctic pikas (Lagomorpha, Ochotonidae). J Mammal 1995, 76(2):302-321.
  • [50]Cooper SJB, Ibrahim KM, Hewitt GM: Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol Ecol 1995, 4:49-60.
  • [51]Green K (Ed): The native alpine and subalpine fauna of the Snowy Mountains In Biodiversity in the Snowy Mountains. Institute of Alpine Studies, Jindabyne, NSW; 2002:134-148.
  • [52]Walsh PS, Metzger DA, Higuchi R: Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991, 10(4):506-513.
  • [53]Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P: Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 1994, 87(6):651-701.
  • [54]Ji YJ, Zhang DX, He LJ: Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 2003, 3(4):581-585.
  • [55]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 2004, 32(5):1792-97.
  • [56][http://geneious.com] webcite Biomatters: Geneious version 6.1.7 created by Biomatters. 2012, Available at .
  • [57]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2890.
  • [58]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the raxml web servers. Systematic Biology 2008, 57:758-771.
  • [59]Silvestro D, Michalak I: raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 2012, 12(4):335-337.
  • [60]Bandelt H-J, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [61][www.fluxus-engineering.com] webcite Fluxus Engineering..
  • [62]Papadopoulou A, Anastasiou I, Vogler AP: Revisiting the insect mitochondrial molecular clock: the mid-Aegean Trench calibration. Mol Biol Evol 2010, 27(7):1659-1672.
  • [63]Thomas JA, Welch JJ, Woolfit M, Bromham L: There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Nat Acad Sci 2006, 103(19):7366-7371.
  • [64]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [65][http://www.R-project.org] webcite R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: 2014. Available at : R Foundation for Statistical Computing.
  • [66]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [67]Casquet J, Thebaud C, Gillespie RG: Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol Ecol Resour 2012, 12(1):136-141.
  • [68]Umbers KDL, Dennison S, Manahan CA, Blondin L, Pagés C, Risterucci AM, Chapuis MP: Microsatellite markers for the chameleon grasshopper (Kosciuscola tristis) (Orthoptera: acrididae), an Australian alpine specialist. Int J Mol Sci 2012, 13(9):12094-12099.
  • [69]Blacket MJ, Robin C, Good RT, Lee SF, Miller AD: Universal primers for fluorescent labelling of PCR fragments - an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 2012, 12(3):456-463.
  • [70]Rousset F: Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 2008, 8:103-106.
  • [71]Benjamini T, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995, 57:289-300.
  • [72]Chapuis MP, Estoup A: Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2007, 24(3):621-631.
  • [73]Peakall R, Smouse PE: GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006, 6:288-295.
  • [74]Peakall R, Smouse PE: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 2012, 28:2537-2539.
  • [75]Meirmans PG, Van Tienderen PH: GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 2004, 4:792-794.
  • [76]Hedrick PW: A standardized genetic differentiation measure. Evolution 2005, 59:1633-1638.
  • [77]Heller R, Siegismund HR: Relationship between three measures of genetic differentiation GST, DEST and G’ST: how wrong have we been? Mol Ecol 2009, 18(10):2080-2083.
  • [78]Jost L: GST and its relatives do not measure differentiation. Mol Ecol 2008, 17:4015-4026.
  • [79]Meirmans PG, Hedrick PW: Assessing population structure: FST and related measures. Mol Ecol Resour 2011, 11(1):5-18.
  • [80]Jombart T, Devillard S, Balloux F: Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010, 11:94. BioMed Central Full Text
  • [81]Chen C, Durand E, Forbes F, François O: Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study. Mol Ecol Notes 2007, 7:747-756.
  • [82]Durand E, Jay F, Gaggiotti OE, François O: Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 2009, 26:1963-1973.
  • [83]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23(14):1801-1806.
  • [84]Rosenberg NA: DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 2004, 4:137-138.
  • [85]Wright S: Isolation by distance. Genetics 1943, 28:114-138.
  • [86][http://CRAN.R-project.org/package=vegan] webcite Oksanen J, Blanchet FG, Kindt R, Legendre R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H: vegan: Community Ecology Package. R package version 2.0-10. 2013, .
  • [87][http://dx.doi.org/10.6084/m9.figshare.1165613] webcite Slatyer, Rachel, Nash, Michael, Endo, Yoshinori, Miller, Adam, Umbers, Kate, Hoffmann, Ary: Microsatellite data forKosciuscola tristis.Figshare 2014, .
  文献评价指标  
  下载次数:15次 浏览次数:3次