期刊论文详细信息
BMC Medical Genomics
Multilocus loss of DNA methylation in individuals with mutations in the histone H3 Lysine 4 Demethylase KDM5C
Rosanna Weksberg7  Charles E Schwartz3  Stephen W Scherer5  Shoshana Wodak8  Jill Hamilton7  Carolyn A Bondy1  James Stavropoulos2  Cindy Skinner3  Fatima E Abidi3  Rageen Rajendram6  Chunhua Zhao6  Youliang Lou6  Yi-An Chen6  Sana Choufani4  Sarah J Goodman4  Andrei L Turinsky8  Darci T Butcher6  Barian HY Chung4  Daria Grafodatskaya6 
[1] Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA;Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada;J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA;Centre of Reproduction, Growth & Development, Department of Pediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong;The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada;Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada;Department of Pediatrics, University of Toronto, Toronto, ON, Canada;Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada
关键词: Intellectual disability;    H3K4 methylation;    DNA methylation;    KDM5C;   
Others  :  1121208
DOI  :  10.1186/1755-8794-6-1
 received in 2012-10-02, accepted in 2013-01-14,  发布年份 2013
PDF
【 摘 要 】

Background

A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.

Results

Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.

Conclusions

We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.

【 授权许可】

   
2013 Grafodatskaya et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211022647909.pdf 1754KB PDF download
Figure 7. 44KB Image download
Figure 6. 34KB Image download
Figure 5. 80KB Image download
Figure 4. 48KB Image download
Figure 3. 57KB Image download
Figure 2. 90KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]van Bokhoven H, Kramer JM: Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol Dis 2010, 39:3-12.
  • [2]Grafodatskaya D, Chung B, Szatmari P, Weksberg R: Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry 2010, 49:794-809.
  • [3]Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns JP, et al.: Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 2005, 76:227-236.
  • [4]Abidi F, Holloway L, Moore CA, Weaver DD, Simensen RJ, Stevenson RE, Rogers RC, Schwartz CE: Novel human pathological mutations. Gene symbol: JARID1C. Disease: mental retardation, X-linked. Hum Genet 2009, 125:345.
  • [5]Abidi FE, Holloway L, Moore CA, Weaver DD, Simensen RJ, Stevenson RE, Rogers RC, Schwartz CE: Mutations in JARID1C are associated with X-linked mental retardation, short stature and hyperreflexia. J Med Genet 2008, 45:787-793.
  • [6]Ounap K, Puusepp-Benazzouz H, Peters M, Vaher U, Rein R, Proos A, Field M, Reimand T: A novel c.2 T > C mutation of the KDM5C/JARID1C gene in one large family with X-linked intellectual disability. Eur J Med Genet 2012, 55:178-184.
  • [7]Rujirabanjerd S, Nelson J, Tarpey PS, Hackett A, Edkins S, Raymond FL, Schwartz CE, Turner G, Iwase S, Shi Y, et al.: Identification and characterization of two novel JARID1C mutations: suggestion of an emerging genotype-phenotype correlation. Eur J Hum Genet 2010, 18:330-335.
  • [8]Santos C, Rodriguez-Revenga L, Madrigal I, Badenas C, Pineda M, Mila M: A novel mutation in JARID1C gene associated with mental retardation. Eur J Hum Genet 2006, 14:583-586.
  • [9]Santos-Reboucas CB, Fintelman-Rodrigues N, Jensen LR, Kuss AW, Ribeiro MG, Campos M Jr, Santos JM, Pimentel MM: A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neurosci Lett 2011, 498:67-71.
  • [10]Tzschach A, Lenzner S, Moser B, Reinhardt R, Chelly J, Fryns JP, Kleefstra T, Raynaud M, Turner G, Ropers HH, et al.: Novel JARID1C/SMCX mutations in patients with X-linked mental retardation. Hum Mutat 2006, 27:389.
  • [11]Adegbola A, Gao H, Sommer S, Browning M: A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 2008, 146A:505-511.
  • [12]Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K: RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 2007, 128:1063-1076.
  • [13]Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y: The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 2007, 128:1077-1088.
  • [14]Huang F, Chandrasekharan MB, Chen YC, Bhaskara S, Hiebert SW, Sun ZW: The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation. J Biol Chem 2010, 285:24548-24561.
  • [15]Jensen LR, Bartenschlager H, Rujirabanjerd S, Tzschach A, Numann A, Janecke AR, Sporle R, Stricker S, Raynaud M, Nelson J, et al.: A distinctive gene expression fingerprint in mentally retarded male patients reflects disease-causing defects in the histone demethylase KDM5C. Pathogenetics 2010, 3:2. BioMed Central Full Text
  • [16]Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y: The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007, 447:601-605.
  • [17]Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, et al.: Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 2011, 147:1628-1639.
  • [18]Agulnik AI, Mitchell MJ, Mattei MG, Borsani G, Avner PA, Lerner JL, Bishop CE: A novel X gene with a widely transcribed Y-linked homologue escapes X-inactivation in mouse and human. Hum Mol Genet 1994, 3:879-884.
  • [19]Carrel L, Willard HF: X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005, 434:400-404.
  • [20]Xu J, Burgoyne PS, Arnold AP: Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet 2002, 11:1409-1419.
  • [21]Xu J, Deng X, Disteche CM: Sex-specific expression of the X-linked histone demethylase gene Jarid1c in brain. PLoS One 2008, 3:e2553.
  • [22]Cedar H, Bergman Y: Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009, 10:295-304.
  • [23]Hashimoto H, Vertino PM, Cheng X: Molecular coupling of DNA methylation and histone methylation. Epigenomics 2010, 2:657-669.
  • [24]Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, Deplus R, Fuks F, Shinkai Y, Cedar H, Bergman Y: De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 2008, 15:1176-1183.
  • [25]Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007, 449:248-251.
  • [26]Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, et al.: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007, 448:714-717.
  • [27]Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, et al.: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 2010, 20:440-446.
  • [28]Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M: Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011, 6:692-702.
  • [29]Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, Arepalli S, Dillman A, Rafferty IP, Troncoso J, et al.: Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 2010, 6:e1000952.
  • [30]Chen YA, Choufani S, Ferreira JC, Grafodatskaya D, Butcher DT, Weksberg R: Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray. Genomics 2011, 97:214-222.
  • [31]Korn EL, Li MC, McShane LM, Simon R: An investigation of two multivariate permutation methods for controlling the false discovery proportion. Stat Med 2007, 26:4428-4440.
  • [32]Tost J, Gut IG: DNA methylation analysis by pyrosequencing. Nat Protoc 2007, 2:2265-2275.
  • [33]Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK: DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 2011, 12:R10. BioMed Central Full Text
  • [34]Fraser HB, Lam LL, Neumann SM, Kobor MS: Population-specificity of human DNA methylation. Genome Biol 2012, 13:R8. BioMed Central Full Text
  • [35]Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, Kucera KS, Willard HF, Myers RM: Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet 2011, 7:e1002228.
  • [36]Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, Craig DW, Redman M, Gershon ES, Liu C: Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 2010, 86:411-419.
  • [37]Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science 2004, 303:1626-1632.
  • [38]Rajendram R, Ferreira JC, Grafodatskaya D, Choufani S, Chiang T, Pu S, Butcher DT, Wodak SJ, Weksberg R: Assessment of methylation level prediction accuracy in methyl-DNA immunoprecipitation and sodium bisulfite based microarray platforms. Epigenetics 2011, 6:410-415.
  • [39]Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007, 448:553-560.
  • [40]Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ, Weis WI, Wang CY, Chazin WJ: Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 285:13507-13516.
  • [41]Filipek A, Jastrzebska B, Nowotny M, Kuznicki J: CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 2002, 277:28848-28852.
  • [42]Ohtsubo M, Yasunaga S, Ohno Y, Tsumura M, Okada S, Ishikawa N, Shirao K, Kikuchi A, Nishitani H, Kobayashi M, Takihara Y: Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA 2008, 105:10396-10401.
  • [43]Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, Grishin NV, Bruick RK: An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 2009, 326:722-726.
  • [44]Thompson JW, Bruick RK: Protein degradation and iron homeostasis. Biochim Biophys Acta 2012, 1823:1484-1490.
  • [45]Matsuzawa SI, Reed JC: Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 2001, 7:915-926.
  • [46]Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y: Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004, 431:873-878.
  • [47]Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, Soderhall C, Scheynius A, Kere J: Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 2012, 7:e41361.
  • [48]Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST: Age-associated DNA methylation in pediatric populations. Genome Res 2012.
  • [49]Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, et al.: Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 2010, 20:434-439.
  • [50]Kerkel K, Schupf N, Hatta K, Pang D, Salas M, Kratz A, Minden M, Murty V, Zigman WB, Mayeux RP, et al.: Altered DNA methylation in leukocytes with trisomy 21. PLoS Genet 2010, 6:e1001212.
  • [51]Rius M, Lyko F: Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 2011, 31:4257-4265.
  • [52]Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, et al.: Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010, 463:360-363.
  • [53]Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J, et al.: Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011, 469:539-542.
  • [54]Li N, Carrel L: Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 2008, 105:17055-17060.
  • [55]Lee MG, Norman J, Shilatifard A, Shiekhattar R: Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 2007, 128:877-887.
  • [56]Sheardown S, Norris D, Fisher A, Brockdorff N: The mouse Smcx gene exhibits developmental and tissue specific variation in degree of escape from X inactivation. Hum Mol Genet 1996, 5:1355-1360.
  • [57]Kaufman L, Ayub M, Vincent JB: The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010, 2:182-209.
  • [58]Ropers HH: Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 2010, 11:161-187.
  • [59]Topper S, Ober C, Das S: Exome sequencing and the genetics of intellectual disability. Clin Genet 2011, 80:117-126.
  • [60]Ramocki MB, Zoghbi HY: Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 2008, 455:912-918.
  • [61]Wu H, Tao J, Sun YE: Regulation and function of mammalian DNA methylation patterns: a genomic perspective. Brief Funct, Genomics 2012 2012, 11:240-250.
  • [62]Ai S, Shen L, Guo J, Feng X, Tang B: DNA Methylation as a Biomarker for Neuropsychiatric Diseases. Int J Neurosci 2012, 22:165-176.
  • [63]Ong CT, Corces VG: Enhancers: emerging roles in cell fate specification. EMBO Rep 2012, 13:423-430.
  • [64]Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 2009, 10:1235-1241.
  • [65]Hu JL, Zhou BO, Zhang RR, Zhang KL, Zhou JQ, Xu GL: The N-terminus of histone H3 is required for de novo DNA methylation in chromatin. Proc Natl Acad Sci USA 2009, 106:22187-22192.
  • [66]Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39:457-466.
  • [67]Agger K, Christensen J, Cloos PA, Helin K: The emerging functions of histone demethylases. Curr Opin Genet Dev 2008, 18:159-168.
  • [68]Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T: KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 2009, 461:415-418.
  • [69]Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Xiao MT, Liu LX, et al.: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19:17-30.
  • [70]Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, et al.: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18:553-567.
  • [71]Buiting K: Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 2010, 154C:365-376.
  • [72]Horsthemke B, Buiting K: Imprinting defects on human chromosome 15. Cytogenet Genome Res 2006, 113:292-299.
  • [73]Mabb AM, Ehlers MD: Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 2010, 26:179-210.
  • [74]Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, et al.: Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009, 459:569-573.
  • [75]Chiurazzi P, Schwartz CE, Gecz J, Neri G: XLMR genes: update 2007. Eur J Hum Genet 2008, 16:422-434.
  • [76]Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, Bhaskaran N, Persson A, Uhlen M, Sangfelt O, et al.: Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 2009, 326:718-721.
  • [77]Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama KI: The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab 2011, 14:339-351.
  • [78]LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, et al.: Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001, 27:209-214.
  • [79]Zhao J, Li M, Bradfield JP, Zhang H, Mentch FD, Wang K, Sleiman PM, Kim CE, Glessner JT, Hou C, et al.: The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. BMC Med Genet 2010, 11:96.
  • [80]Hari L, Brault V, Kleber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R, Sommer L: Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 2002, 159:867-880.
  • [81]Machon O, van den Bout CJ, Backman M, Kemler R, Krauss S: Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 2003, 122:129-143.
  • [82]Yu X, Malenka RC: Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 2003, 6:1169-1177.
  • [83]Campos VE, Du M, Li Y: Increased seizure susceptibility and cortical malformation in beta-catenin mutant mice. Biochem Biophys Res Commun 2004, 320:606-614.
  • [84]Kilanczyk E, Wasik U, Filipek A: CacyBP/SIP phosphatase activity in neuroblastoma NB2a and colon cancer HCT116 cells. Biochem Cell Biol 2012.
  • [85]Samuels IS, Saitta SC, Landreth GE: MAP'ing CNS development and cognition: an ERKsome process. Neuron 2009, 61:160-167.
  • [86]Morgan HD, Santos F, Green K, Dean W, Reik W: Epigenetic reprogramming in mammals. Hum Mol Genet 2005, 14(1):47-58.
  • [87]Ross J, Roeltgen D, Zinn A: Cognition and the sex chromosomes: studies in Turner syndrome. Horm Res 2006, 65:47-56.
  • [88]Xu J, Andreassi M: Reversible histone methylation regulates brain gene expression and behavior. Horm Behav 2011, 59:383-392.
  文献评价指标  
  下载次数:12次 浏览次数:11次