期刊论文详细信息
BMC Genomics
Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases
Bryan A Bailey3  Gonçalo AG Pereira9  Rachel L Melnick3  Jonathan Shao4  Robert E Davis4  Jayne Crozier5  Thiruvarangan Ramaraj1,10  Andrew Farmer1,10  Piotr Mieczkowski6  Mark J Guiltinan2  John E Carlson1  Stephan C Schuster8  Marcelo Falsarella Carazzolle7  Paulo José PL Teixeira9  Daniela PT Thomazella9  Gustavo Gilson Lacerda Costa7  Lyndel W Meinhardt3 
[1] Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA;Department of Horticulture, Pennsylvania State University, University Park, PA 16802, USA;Sustainable Perennial Crops Lab, USDA/ARS, Bldg 001 Rm 223 Beltsville Agricultural Research Center-West, Beltsville, MD 20705, USA;Molecular Plant Pathology Lab, USDA/ARS, Bldg 004 Rm 119 Beltsville Agricultural Research Center West, Beltsville, MD 20705, USA;CABI Bioscience UK Centre, Egham, UK;Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Mary Ellen Jones, Room 921, 27599-3280 Chapel Hill, NC, USA;Centro Nacional de Processamento de Alto Desempenho em São Paulo, Universidade Estadual de Campinas, CP 6141, Campinas 13083-970, SP, Brazil;Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA;Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas 13083-970, SP, Brazil;National Center of Genomic Research, 2935 Rodeo Park Drive East Santa Fe, NM 87505 Santa Fe, USA
Others  :  1217832
DOI  :  10.1186/1471-2164-15-164
 received in 2013-09-29, accepted in 2014-02-14,  发布年份 2014
PDF
【 摘 要 】

Background

The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp.

Results

We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase.

Conclusions

Genome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease.

【 授权许可】

   
2014 Meinhardt et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708151212789.pdf 2111KB PDF download
Figure 3. 217KB Image download
Figure 2. 83KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Latunde-Dada AO: Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout. Mol Plant Pathol 2001, 2(4):187-198.
  • [2]Oliver RP, Ipcho SVS: Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol 2004, 5(4):347-352.
  • [3]Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG: Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 2006, 18(1):243-256.
  • [4]Link TI, Voegele RT: Secreted proteins of Uromyces fabae: similarities and stage specificity. Mol Plant Pathol 2008, 9(1):59-66.
  • [5]Brown NA, Antoniw J, Hammond-Kosack KE: The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. Plos One 2012, 7(4):e33731.
  • [6]Thomma BP: Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 2003, 4(4):225-236.
  • [7]Evans HC, Stalpers JA, Samson RA, Benny GL: Taxonomy of Monilia-Roreri, an important pathogen of theobroma-cacao in South-America. Can J Bot 1978, 56(20):2528-2532.
  • [8]Aime MC, Phillips-Mora W: The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 2005, 97(5):1012-1022.
  • [9]Phillips-Mora W, Wilkinson MJ: Frosty pod of cacao: a disease with a limited geographic range but unlimited potential for damage. Phytopathology 2007, 97(12):1644-1647.
  • [10]Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang DP, Pereira GAG: Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe? Mol Plant Pathol 2008, 9(5):577-588.
  • [11]Ferreira LFR, Duarte KMR, Gomes LH, Carvalho RS, Leal GA, Aguiar MM, Armas RD, Tavares FCA: Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae). Genet Mol Res 2012, 11(3):2559-2568.
  • [12]Phillips-Mora W, Wilkinson MJ: Frosty pod: a disease of limited geographic distribution but unlimited potential for damage. Phytopathology 2006, 96(6):S138-S138.
  • [13]Evans HC: Pod Rot of Cacao caused by Moniliophthora (Monilia) roreri. 24th edition. London: Commonwealth Agricultural Bureau; 1981.
  • [14]Joosten M, de Wit P: THE TOMATO-CLADOSPORIUM FULVUM INTERACTION: a versatile experimental system to study plant-pathogen interactions. Annu Rev Phytopathol 1999, 37:335-367.
  • [15]Perfect SE, Green JR: Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2001, 2(2):101-108.
  • [16]Scarpari LM, Meinhardt LW, Mazzafera P, Pomella AWV, Schiavinato MA, Cascardo JCM, Pereira GAG: Biochemical changes during the development of witches’ broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. J Exp Bot 2005, 56(413):865-877.
  • [17]Melnick RL, Marelli J, Bailey BA: The molecular interaction of Theobroma cacao and Moniliophthora perniciosa, causal agent of witches’ broom, during infection of young pods. Phytopathology 2011, 101(6):S274-S274.
  • [18]Melnick RL, Marelli JP, Sicher RC, Strem MD, Bailey BA: The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches’ broom disease, during parthenocarpy. Tree Genet Genomes 2012, 8(6):1261-1279.
  • [19]Thomazella DP, Teixeira PJ, Oliveira HC, Saviani EE, Rincones J, Toni IM, Reis O, Garcia O, Meinhardt LW, Salgado I, Pereira GA: The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development. New Phytol 2012, 194(4):1025-1034.
  • [20]Mondego JM, Carazzolle MF, Costa GG, Formighieri EF, Parizzi LP, Rincones J, Cotomacci C, Carraro DM, Cunha AF, Carrer H, Vidal RO, Estrela RC, Garcia O, Thomazella DPT, de Oliveira BV, Pires ABL, Rio MCS, Araujo MRR, de Moraes MH, Castro LAB, Gramacho KP, Goncalves MS, Neto JPM, Neto AG, Barbosa LV, Guiltinan MJ, Bailey BA, Meinhardt LW, Cascardo JCM, Pereira GAG: A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom disease of cacao. Bmc Genomics 2008, 9:548. BioMed Central Full Text
  • [21]Bailey BA, Crozier J, Sicher RC, Strem MD, Melnick R, Carazzolle MF, Costa GGL, Pereira GAG, Zhang DP, Maximova S, Guiltinan M, Meinhardt L: Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri. Physiol Mol Plant P 2013, 81:84-96.
  • [22]Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991, 280(Pt 2):309-316.
  • [23]Dias FM, Vincent F, Pell G, Prates JA, Centeno MS, Tailford LE, Ferreira LM, Fontes CM, Davies GJ, Gilbert HJ: Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J Biol Chem 2004, 279(24):25517-25526.
  • [24]Fibriansah G, Masuda S, Koizumi N, Nakamura S, Kumasaka T: The 1.3 A crystal structure of a novel endo-beta-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96. Proteins 2007, 69(3):683-690.
  • [25]Markovic O, Janecek S: Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng 2001, 14(9):615-631.
  • [26]Vandermarliere E, Bourgois TM, Winn MD, van Campenhout S, Volckaert G, Delcour JA, Strelkov SV, Rabijns A, Courtin CM: Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochem J 2009, 418(1):39-47.
  • [27]Tiels P, Baranova E, Piens K, De Visscher C, Pynaert G, Nerinckx W, Stout J, Fudalej F, Hulpiau P, Tannler S, Geysens S, Van Hecke A, Valevska A, Vervecken W, Remaut H, Callewaert N: A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol 2012, 30(12):1225-1231.
  • [28]Ferreira P, Hernandez-Ortega A, Herguedas B, Martinez AT, Medina M: Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates. J Biol Chem 2009, 284(37):24840-24847.
  • [29]Mayer AM, Staples RC: Laccase: new functions for an old enzyme. Phytochemistry 2002, 60(6):551-565.
  • [30]Kersten PJ: Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A 1990, 87(8):2936-2940.
  • [31]Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G: Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A 1995, 92(15):7090-7094.
  • [32]Wostemeyer J, Kreibich A: Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet 2002, 41(4):189-198.
  • [33]Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6000 genes. Science 1996, 274(5287):546-563. 547
  • [34]Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, et al.: The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434(7036):980-986.
  • [35]Labbe J, Murat C, Morin E, Tuskan GA, Le Tacon F, Martin F: Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor. Plos One 2012, 7(8):e40197.
  • [36]Adomako D: Cocoa pod husk pectin. Phytochemistry 1972, 11(3):1145.
  • [37]Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K: Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 2013, 197(4):1236-1249.
  • [38]Garcia O, Macedo JAN, Tiburcio R, Zaparoli G, Rincones J, Bittencourt LMC, Ceita GO, Micheli F, Gesteira A, Mariano AC, Schiavinato MA, Medrano FJ, Meinhardt LW, Pereira GA, Cascardo JC: Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom in Theobroma cacao. Mycol Res 2007, 111:443-455.
  • [39]Pemberton CL, Salmond GP: The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis. Mol Plant Pathol 2004, 5(4):353-359.
  • [40]Zaparoli G, Barsottini MR, de Oliveira JF, Dyszy F, Teixeira PJ, Barau JG, Garcia O, Costa-Filho AJ, Ambrosio AL, Pereira GA, Dias SM: The crystal structure of necrosis-and ethylene-inducing protein 2 from the causal agent of cacao’s Witches’ Broom disease reveals key elements for its activity. Biochemistry-Us 2011, 50(45):9901-9910.
  • [41]Cabral A, Oome S, Sander N, Kufner I, Nurnberger T, Van den Ackerveken G: Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region. Mol Plant Microbe Interact 2012, 25(5):697-708.
  • [42]Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B: Interaction transcriptome analysis identifies magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease. Plant Cell 2009, 21(4):1273-1290.
  • [43]Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD: Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 2007, 7(17):3171-3183.
  • [44]van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ: Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 2006, 19(12):1420-1430.
  • [45]Roby D, Gadelle A, Toppan A: Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem Biophys Res Commun 1987, 143(3):885-892.
  • [46]Deising H, Siegrist J: Chitin deacetylase activity of the rust uromyces-viciae-fabae is controlled by fungal morphogenesis. Fems Microbiol Lett 1995, 127(3):207-211.
  • [47]Teixeira PJPL, Thomazella DPT, Vidal RO, Do Prado PFV, Reis O, Baroni RM, Franco SF, Mieczkowski P, Pereira GAG, Mondego JMC: The fungal pathogen moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. Plos One 2012., 7(9)
  • [48]Riviere MP, Marais A, Ponchet M, Willats W, Galiana E: Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1-> 3)-glucanase activity at the onset of tobacco defence reactions. J Exp Bot 2008, 59(6):1225-1239.
  • [49]Levy A, Guenoune-Gelbart D, Epel BL: beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication. Plant Signal Behav 2007, 2(5):404-407.
  • [50]Prados-Rosales RC, Roldan-Rodriguez R, Serena C, Lopez-Berges MS, Guarro J, Martinez-del-Pozo A, Di Pietro A: A PR-1-like protein of fusarium oxysporum functions in virulence on mammalian hosts. J Biol Chem 2012, 287(26):21970-21979.
  • [51]Kershaw MJ, Talbot NJ: Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 1998, 23(1):18-33.
  • [52]Zelena K, Takenberg M, Lunkenbein S, Woche SK, Nimtz M, Berger RG: PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus. Biotechnol Appl Biochem 2013, 60(2):147-154.
  • [53]Wosten HA: Hydrophobins: multipurpose proteins. Annu Rev Microbiol 2001, 55:625-646.
  • [54]Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latge JP: Hydrophobins–unique fungal proteins. PLoS Pathog 2012, 8(5):e1002700.
  • [55]De Oliveira AL, Gallo M, Pazzagli L, Benedetti CE, Cappugi G, Scala A, Pantera B, Spisni A, Pertinhez TA, Cicero DO: The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double psi beta-barrel fold and carbohydrate binding. J Biol Chem 2011, 286(20):17560-17568.
  • [56]Baccelli I, Comparini C, Bettini PP, Martellini F, Ruocco M, Pazzagli L, Bernardi R, Scala A: The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani. Fems Microbiol Lett 2012, 327(2):155-163.
  • [57]Zaparoli G, Cabrera OG, Medrano FJ, Tiburcio R, Lacerda G, Pereira GG: Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins. Mycol Res 2009, 113:61-72.
  • [58]Lombardi L, Faoro F, Luti S, Baccelli I, Martellini F, Bernardi R, Picciarelli P, Scala A, Pazzagli L: Differential timing of defense-related responses induced by cerato-platanin and cerato-populin, two non-catalytic fungal elicitors. Physiol Plant 2013, 149:408-421.
  • [59]Yang Y, Zhang H, Li G, Li W, Wang X, Song F: Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Plant Biotechnol J 2009, 7(8):763-777.
  • [60]Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y: EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum. Bmc Genomics 2011, 12:327. BioMed Central Full Text
  • [61]Frischmann A, Neudl S, Gaderer R, Bonazza K, Zach S, Gruber S, Spadiut O, Friedbacher G, Grothe H, Seidl-Seiboth V: Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus trichoderma atroviride. J Biol Chem 2013, 288(6):4278-4287.
  • [62]Jeong JS, Mitchell TK, Dean RA: The magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. Fems Microbiol Lett 2007, 273(2):157-165.
  • [63]Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F: Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. New Phytol 2003, 159(1):117-129.
  • [64]Cosgrove DJ: Loosening of plant cell walls by expansins. Nature 2000, 407(6802):321-326.
  • [65]Quiroz-Castaneda RE, Martinez-Anaya C, Cuervo-Soto LI, Segovia L, Folch-Mallol JL: Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta. Microb Cell Fact 2011, 10:8. BioMed Central Full Text
  • [66]Brotman Y, Briff E, Viterbo A, Chet I: Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 2008, 147(2):779-789.
  • [67]Yamada M, Sakuraba S, Shibata K, Taguchi G, Inatomi S, Okazaki M, Shimosaka M: Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display. Fems Microbiol Lett 2006, 254(1):165-172.
  • [68]Rincones J, Scarpari LM, Carazzolle MF, Mondego JMC, Formighieri EF, Barau JG, Costa GGL, Carraro DM, Brentani HP, Vilas-Boas LA, de Oliveira BV, Sabha M, Dias R, Cascardo JM, Azevedo RA, Meinhardt LW, Pereira GA: Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa. Mol Plant Microbe In 2008, 21(7):891-908.
  • [69]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [70]Sommer DD, Delcher AL, Salzberg SL, Pop M: Minimus: a fast, lightweight genome assembler. BMC Bioinforma 2007, 8:64. BioMed Central Full Text
  • [71]Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M: Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 2008, 18(12):1979-1990.
  • [72]Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B: AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 2006, 34(Web Server issue):W435-W439.
  • [73]Stanke M, Tzvetkova A, Morgenstern B: AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol 2006, 7(Suppl 1):S11 11-18.
  • [74]Slater GS, Birney E: Automated generation of heuristics for biological sequence comparison. BMC Bioinforma 2005, 6:31. BioMed Central Full Text
  • [75]Borodovsky M, Lomsadze A, Ivanov N, Mills R: Eukaryotic gene prediction using GeneMark.hmm. Curr Protoc Bioinformatics 2003, Chapter 4:Unit4 6.
  • [76]Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR: Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 2008, 9(1):R7. BioMed Central Full Text
  • [77]Koski LB, Gray MW, Lang BF, Burger G: AutoFACT: an automatic functional annotation and classification tool. BMC Bioinforma 2005, 6:151. BioMed Central Full Text
  • [78]Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007, 23(10):1282-1288.
  • [79]Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res 2002, 30(1):276-280.
  • [80]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [81]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [82]McCarthy EM, McDonald JF: LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 2003, 19(3):362-367.
  • [83]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1-4):462-467.
  • [84]Bailey B, Bae H, Strem M, Samuels G, Evans H, Thomas S, Holmes K: Molecular responses resulting from the endophytic association between Trichoderma species and cocoa (Theobroma cacao). Phytopathology 2005, 95(6):S5-S5.
  • [85]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [86]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [87]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001, 25(4):402-408.
  • [88]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3(6):1101-1108.
  • [89]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [90]Petersen TN, Brunak S, Von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
  • [91]Krogh A, Larsson B, Von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305(3):567-580.
  • [92]Sonnhammer EL, Von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998, 6:175-182.
  • [93]Frieman MB, Cormack BP: Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 2004, 150(Pt 10):3105-3114.
  • [94]Frieman MB, Cormack BP: The omega-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol Microbiol 2003, 50(3):883-896.
  • [95]Poisson G, Chauve C, Chen X, Bergeron A: FragAnchor: a large-scale predictor of glycosylphosphatidylinositol anchors in eukaryote protein sequences by qualitative scoring. Genomics Proteomics Bioinformatics 2007, 5(2):121-130.
  • [96]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
  • [97]Delcher AL, Phillippy A, Carlton J, Salzberg SL: Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 2002, 30(11):2478-2483.
  文献评价指标  
  下载次数:7次 浏览次数:2次