期刊论文详细信息
BMC Evolutionary Biology
A multi-locus inference of the evolutionary diversification of extant flamingos (Phoenicopteridae)
Marcel van Tuinen1  Brittney Ferrari1  Mark AF Gillingham2  Lisa M Ogawa1  Chris R Torres1 
[1]Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
[2]Leibniz Institute for Zoo and Wildlife Research, Department of Evolutionary Genetics, Alfred-Kowalke-Str. 17, Berlin D-10315, Germany
关键词: Filter feeding;    Bill;    Fossil;    Biogeography;    Divergence time;    Phylogeny;    Flamingo;   
Others  :  857914
DOI  :  10.1186/1471-2148-14-36
 received in 2013-12-20, accepted in 2014-02-07,  发布年份 2014
PDF
【 摘 要 】

Background

Modern flamingos (Phoenicopteridae) occupy a highly specialized ecology unique among birds and represent a potentially powerful model system for informing the mechanisms by which a lineage of birds adapts and radiates. However, despite a rich fossil record and well-studied feeding morphology, molecular investigations of the evolutionary progression among modern flamingos have been limited. Here, using three mitochondrial (mtDNA) markers, we present the first DNA sequence-based study of population genetic variation in the widely distributed Chilean Flamingo and, using two mtDNA and 10 nuclear (nDNA) markers, recover the species tree and divergence time estimates for the six extant species of flamingos. Phylogenetic analyses include likelihood and Bayesian frameworks and account for potential gene tree discordance. Analyses of divergence times are fossil calibrated at the divergence of Mirandornithes (flamingos + grebes) and the divergence of crown grebes.

Results

mtDNA sequences confirmed the presence of a single metapopulation represented by two minimally varying mtDNA barcodes in Chilean flamingos. Likelihood and Bayesian methods recovered identical phylogenies with flamingos falling into shallow-keeled (comprising the Greater, American and Chilean Flamingos) and deep-keeled (comprising the Lesser, Andean and James’s Flamingos) sub-clades. The initial divergence among flamingos occurred at or shortly after the Mio-Pliocene boundary (6–3 Ma) followed by quick consecutive divergences throughout the Plio-Pleistocene. There is significant incongruence between the ages recovered by the mtDNA and nDNA datasets, likely due to mutational saturation occurring in the mtDNA loci.

Conclusion

The finding of a single metapopulation in the widespread Chilean Flamingo confirms similar findings in other widespread flamingo species. The robust species phylogeny is congruent with previous classifications of flamingos based on feeding morphology. Modern phoenicopterids likely originated in the New World with each sub-clade dispersing across the Atlantic at least once. Our divergence time estimates place flamingos among the youngest families of birds, counter to the classical notion of flamingos as among the oldest based on biogeography and the fossil record. Finally, we designate ‘Phoeniconaias’ as a junior synonym of ‘Phoenicoparrus’ and redefine the latter genus as containing all flamingos more closely related to Phoenicoparrus andinus than Phoenicopterus roseus.

【 授权许可】

   
2014 Torres et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723085640152.pdf 1118KB PDF download
53KB Image download
【 图 表 】

【 参考文献 】
  • [1]Hoyo J del, Elliott A, Sargatal J (Eds): Handbook of the Birds of the World. 1st edition. Barcelona, Spain: Lynx Edicions; 1992.
  • [2]Mayr G, Smith R: Avian remains from the lowermost Oligocene of Hoogbutsel (Belgium). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Sciences de la Terre 2002, 72:139-150.
  • [3]Gervais P: Zoologie et Paleontologie Francaise. Volume 3. Paris, France: Arthus Bertrand; :1852.
  • [4]Miller AH: The fossil flamingos of Australia. The Condor 1963, 65:289-299.
  • [5]Harrison CJO, Walker CA: Cranial material of Oligocene and Miocene flamingos: with a description of new species from Africa. Bulletin of the British Museum (Natural History), Geology 1976, 27:305-314.
  • [6]Van Tuinen M, Stidham TA, Hadly EA: Tempo and mode of modern bird evolution observed with large-scale taxonomic sampling. Historical Biology 2006, 18:205-221.
  • [7]Van Tuinen M, Butvill DB, Kirsch JAW, Hedges SB: Convergence and divergence in the evolution of aquatic birds. Proceedings of the Royal Society of London B 2001, 268:1345-1350.
  • [8]Chubb AL: New nuclear evidence for the oldest divergence among neognath birds: the phylogenetic utility of ZENK (i). Mol Phylogenet Evol 2004, 30:140-151.
  • [9]Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G: Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters 2006, 2:543-547.
  • [10]Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T: A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320:1763-1768.
  • [11]McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT: A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 2013, 8:e54848.
  • [12]Mayr G: Morphological evidence for sister group relationships between flamingos (Aves: Phoenicopteridae) and grebes (Podicipedidae). Zool J Linn Soc 2004, 140:157-169.
  • [13]Manegold A: Two additional synapomorphies of grebes Podicipedidae and flamingo Phoenicopteridae. Acta Ornithologica 2006, 41:79-82.
  • [14]Sangster G: A name for the flamingo-grebe clade. Ibis 2005, 147:612-615.
  • [15]Sibley CG, Ahlquist JE: Phylogeny and Classification of Birds: A Study in Molecular Evolution. New Haven, Connecticut: Yale University Press; 1990.
  • [16]Jenkin PM: The filter-feeding and food of flamingos (Phoenicopteri). Philos Trans R Soc Lond B Biol Sci 1957, 240:401-493.
  • [17]Mascitti V, Kravetz FO: Bill morphology of South American flamingos. The Condor 2002, 104:73-83.
  • [18]Geraci J, Béchet A, Cézilly F, Ficheux S, Baccetti N, Samraoui B, Wattier R: Greater Flamingo colonies around the Mediterranean form a single interbreeding population and share a common history. J Avian Biol 2012, 43:341-354.
  • [19]Zaccara S, Crosa G, Childress B, McCulloch G, Harper DM: Lesser Flamingo Phoenicopterus minor populations in eastern and southern Africa are not genetically isolated. Ostrich 2008, 79:165-170.
  • [20]Caziani SM, Olivio OR, Ramiirez ER, Romano M, Derlindati EJ, Talamo A, Ricalde D, Quirogo C, Contreras JP, Valqui M, Sosa H: Seasonal distribution, abundance, and nesting of Puna, Andean, and Chilean Flamingos. The Condor 2007, 109:276-287.
  • [21]Marconi P, Sureda AL, Arengo F, Aguilar MS, Amado N, Alza L, Rocha O, Torres R, Moschione F, Romano M, Sosa H, Derlindati EJ: Fourth simultaneous flamingo census in South America: preliminary results. Flamingo 2011, 18:48-53.
  • [22]Kapil R: Microsatellite-Based Genetic Profiling for the Management of Wild and Captive Flamingo Populations. PhD dissertation. Denton, Texas: University of North Texas; 2005.
  • [23]Nadvornik P, Drobek A, Cihak K: Microsatellite markers for the study of paternity in Greater Flamingo (Phoenicopterus roseus) and Caribbean Flamingo (P. ruber). Journal of Agrobiology 2008, 25:93-96.
  • [24]Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL: Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS ONE 2009, 4:e4379.
  • [25]Bucher EH, Curto E: Influence of long-term climatic changes on breeding of the Chilean flamingo in Mar Chiquita, Cordoba, Argentina. Hydrobiologia 2012, 697:127-137.
  • [26]Studer-Thiersch A: What 19 years of observation on captive Greater Flamingos suggests about adaptations to breeding under irregular conditions. Waterbirds: the International Journal of Waterbird Biology 2000, 23:150-159. Special Publication 1: Conservation Biology of Flamingos
  • [27]Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN: Comprehensive DNA barcode coverage of North American birds. Molecular Ecology Notes 2007, 7:535-543.
  • [28]Gray GR: Notes on the bills of the species of flamingo (Phoenicopterus). Ibis 1869, 11:438-443.
  • [29]Bonaparte CL: Excursions dans les divers musee d’Allemagne, de Hollande et de Belgique, et tableaux paralleliques de l’ordre des Echassiers. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 1856, 43:410-421.
  • [30]Moore WS, DeFilippis VR: The window of taxonomic resolution for phylogenies based on mitochondrial Cytochrome B. In Avian Molecular Evolution and Systematics. Edited by Mindell DP. San Diego, California: Academic Press; 1997:84-119.
  • [31]Shufeldt RW: A study of the fossil avifauna of the Equus beds of the Oregon desert. Journal of the Academy of Natural Sciences of Philadelphia 1892, 9:389-425.
  • [32]Miller L: A Pliocene flamingo from Mexico. The Wilson Bulletin 1944, 56:77-82.
  • [33]Brodkorb P: A Pliocene flamingo from Florida. Natural History Miscellanea 1953, 124:1-4.
  • [34]Howard H: Fossil birds from Manix Lake California. Geological Survey Professional Paper 1955, 264-J:199-206.
  • [35]Alonso RN: Valoración icnoavifaunística de ambientes boratíferos. 4th Congreso Latinoamericano de Paleontología, Santa Cruz de la Sierra, Actas 1987, 1:586-597.
  • [36]Nasif N: Primer registro de flamencos (Phoenicopteridae) del Terciario superior, Valle del Cajón (Provincia de Catamarca, Argentina). Ameghiniana 1989, 25:169-173.
  • [37]Ubilla M, Perea D, Tambussi C, Tonni EP: Primer registro fosil de Phoenicopteridae (Aves: Charadriiformes) para el Uruguay (Mio-Plioceno). An Acad Bras Cienc 1990, 62:61-68.
  • [38]Rich PV, van Tets GF, Rich THV, McEvey AR: The Pliocene and Quaternary flamingoes of Australia. Memoirs of the Queensland Museum 1987, 25:207-225.
  • [39]Olson SL, Feduccia A: Relationships and evolution of flamingos (Aves: Phoenicopteridae). Smithsonian Contributions to Zoology 1980, 316:1-84. Publications of the Smithsonian Institution
  • [40]Peters DS: Juncitarsus merkeli n. sp. stutzt die ableitung der flamingos von regenpfeifervogeln (Aves: Charadriiformes: Phoenicopteridae). Courier Forschungsinstitut Senckenberg 1987, 97:141-155.
  • [41]Mayr G: The Eocene Juncitarsus - its phylogenetic position and significance for the evolution and higher-level affinities of flamingos and grebes. Comptes Rendus Palevol 2013, 13:9-18.
  • [42]Milne-Edwards A: Recherches Anatomiques et Paleontologiques pour Servir a l’Histoire des Oiseaux Fossiles de la France. Volume 4. Paris, France: Victor Masson et Fils; :1867-1871.
  • [43]Cheneval J: Les oiseaux aquatiques (Gaviiformes a Anseriformes) du gisement aquitanien de Saint-Gerand-le-Puy (Allier, France): revision systematique. Palaeovertebrata 1984, 14:33-115.
  • [44]Hadly EA, Ramakrishnan U, Chan YL, van Tuinen M, O’Keefe K, Spaeth PA, Conroy CJ: Genetic response to climatic change: insights from ancient DNA and phylochronology. PLoS Biology 2004, 2:e290.
  • [45]Ogawa LM, Blanc-Goldhammer DR, Adams EL, van Tuinen M: A first molecular phylogenetic study of grebes (Aves: Podicipedidae). 126th Meeting of the American Ornithological Union, Portland, Oregon, Abstract Volume 2008, 142. [http://www.pdxbirds08.org/files/pdx2008-abstracts.pdf webcite]
  • [46]Backström N, Fagerberg S, Ellegren H: Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Molecular Ecology 2008, 17:964-980.
  • [47]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [48]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 2012, 61:539-542.
  • [49]Rambaut A, Drummond AJ: Tracer V1.4. 2007. http://beast.bio.ed.ac.uk/Tracer webcite
  • [50]Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data. Mol Biol Evol 2010, 27:570-580.
  • [51]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
  • [52]Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patane JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Muller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ: Best practices for justifying fossil calibrations. Systematic Biology 2012, 61:346-359.
  • [53]Navas L: Algunos fosiles de Libros (Teruel). Boletin de la Sociedad Iberica de Ciencias Naturales 1922, 21:52-61.
  • [54]Ksepka DT, Balanoff AM, Bell MA, Houseman MD: Fossil grebes from the Truckee formation (Miocene) of Nevada and a new phylogenetic analysis of Podicipediformes (Aves). Palaeontology 2013, 56:1-21.
  文献评价指标  
  下载次数:21次 浏览次数:28次