期刊论文详细信息
BMC Public Health
Info-gap management of public health Policy for TB with HIV-prevalence and epidemiological uncertainty
Nicola M Zetola3  Clifford C Dacso1  Yakov Ben-Haim2 
[1] Molecular & Cell Biology and Medicine, Baylor College of Medicine, Houston, Texas;Yitzhak Moda’i Chair in Technology and Economics, Technion—Israel Institute of Technology, Haifa 32000, Israel;Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
关键词: Info-gap;    Robustness;    Uncertainty;    Epidemiology;    Public health;    HIV-AIDS;    TB management;   
Others  :  1162717
DOI  :  10.1186/1471-2458-12-1091
 received in 2012-06-20, accepted in 2012-10-04,  发布年份 2012
PDF
【 摘 要 】

Background

Formulation and evaluation of public health policy commonly employs science-based mathematical models. For instance, epidemiological dynamics of TB is dominated, in general, by flow between actively and latently infected populations. Thus modelling is central in planning public health intervention. However, models are highly uncertain because they are based on observations that are geographically and temporally distinct from the population to which they are applied.

Aims

We aim to demonstrate the advantages of info-gap theory, a non-probabilistic approach to severe uncertainty when worst cases cannot be reliably identified and probability distributions are unreliable or unavailable. Info-gap is applied here to mathematical modelling of epidemics and analysis of public health decision-making.

Methods

Applying info-gap robustness analysis to tuberculosis/HIV (TB/HIV) epidemics, we illustrate the critical role of incorporating uncertainty in formulating recommendations for interventions. Robustness is assessed as the magnitude of uncertainty that can be tolerated by a given intervention. We illustrate the methodology by exploring interventions that alter the rates of diagnosis, cure, relapse and HIV infection.

Results

We demonstrate several policy implications. Equivalence among alternative rates of diagnosis and relapse are identified. The impact of initial TB and HIV prevalence on the robustness to uncertainty is quantified. In some configurations, increased aggressiveness of intervention improves the predicted outcome but also reduces the robustness to uncertainty. Similarly, predicted outcomes may be better at larger target times, but may also be more vulnerable to model error.

Conclusions

The info-gap framework is useful for managing model uncertainty and is attractive when uncertainties on model parameters are extreme. When a public health model underlies guidelines, info-gap decision theory provides valuable insight into the confidence of achieving agreed-upon goals.

【 授权许可】

   
2012 Ben-Haim et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150413075118644.pdf 599KB PDF download
Figure 9. 59KB Image download
Figure 8. 55KB Image download
Figure 7. 51KB Image download
Figure 6. 48KB Image download
Figure 5. 51KB Image download
Figure 4. 47KB Image download
Figure 3. 35KB Image download
Figure 2. 38KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Bhunu CP, Garira W, Mukandavire Z: Modeling HIV/AIDS and tuberculosis coinfection. Bull Math Biol 2009, 71(7):1745-1780.
  • [2]Bhunu CP, Garira W, Mukandavire Z, Magombedze G: Modelling the effects of pre-exposure and post-exposure vaccines in tuberculosis control. J Theor Biol 2008, 254(3):633-649.
  • [3]Bhunu CP, Garira W, Mukandavire Z, Zimba M: Tuberculosis transmission model with chemoprophylaxis and treatment. Bull Math Biol 2008, 70(4):1163-1191.
  • [4]Wastney ME, Subramanian KN, Broering N, Boston R: Using models to explore whole-body metabolism and accessing models through a model library. Metabolism 1997, 46(3):330-332.
  • [5]Boston R, Stefanovski D, Moate P, Linares O, Greif P: Cornerstones to shape modeling for the 21st century: introducing the AKA-Glucose project. Adv Exp Med Biol 2003, 537:21-42.
  • [6]Aparicio JP, Capurro AF, Castillo-Chavez C: Markers of disease evolution: the case of tuberculosis. J Theor Biol 2002, 215(2):227-237.
  • [7]Young D, Stark J, Kirschner D: Systems biology of persistent infection: tuberculosis as a case study. Nat Rev Microbiol 2008, 6(7):520-528.
  • [8]Ben-Haim Y: Info-Gap Decision Theory: Decisions Under Severe Uncertainty. London: Academic Press; 2006.
  • [9]Ben-Haim Y, Dacso CC, Carrasco J, Rajan N: Heterogeneous Uncertainties in cholesterol management. Intl J Approximate Reasoning 2009, 50:1046-1065.
  • [10]Dye C: Global epidemiology of tuberculosis. Lancet 2006, 367(9514):938-940.
  • [11]Corbett E, Watt C, Walker N, Maher D, Williams B, Raviglione M, Dye C: The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003, 163(9):1009-1021.
  • [12]Zignol M, Hosseini M, Wright A: Global incidence of multidrug-resistant tuberculosis. J Infect Dis 2006, 194(4):479-485.
  • [13]Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M: Tuberculosis control in the era of HIV. Nat Rev Immunol 2005, 5(10):819-826.
  • [14]Dye C, Maher D, Weil D, Espinal M, Raviglione M: Targets for global tuberculosis control. Int J Tuberc Lung Dis 2006, 10(4):460-462.
  • [15]Williams BG, Korenromp EL, Gouws E, Schmid GP, Auvert B, Dye C: HIV infection, antiretroviral therapy, and CD4+ cell count distributions in African populations. J Infect Dis 2006, 194(10):1450-1458.
  • [16]Williams BG, Granich R, Chauhan LS, Dharmshaktu NS, Dye C: The impact of HIV/AIDS on the control of tuberculosis in India. Proc Natl Acad Sci US 2005, 102(27):9619-9624.
  • [17]Murray CJL, Salomon JA: Modeling the impact of global tuberculosis control strategies. Proc Natl Acad Sci USA 1998, 95:13881-13886.
  • [18]Murray CJL, Salomon JA: Using Mathematical Models to Evaluate Global Tuberculosis Control Strategies. 1998. [http://apin.harvard.edu/faculty/joshua-Salomon/files/MurraySalomon_ModelingTBControlStrategies_HCPDS1998.pdf]
  • [19]Murray CJL, Salomon JA: Expanding the WHO tuberculosis control strategy: rethinking the role of active case-finding. Int J Tuberc Lung Dis 1998, Suppl 1:S9-S15.
  • [20]Knight FH: Risk, Uncertainty, and Profit. New York: Hart, Schaffner, and Marx; 1921.
  • [21]Wald A: Statistical decision functions which minimize the maximum risk. Ann Mathematics 1945, 46(2):265-280.
  • [22]Ben-Tal A, Nemirovski A: Robust solutions of uncertain linear programs. Oper Res Lett 1999, 25:1-13.
  • [23]Ben-Haim Y: Robust rationality and decisions under severe uncertainty. J Franklin Inst 2000, 337:171-199.
  • [24]Ben-Haim Y, Hemez F: Robustness, fidelity and prediction-looseness of models. Proc R Soc A 1999, 468:227-244.
  • [25]Ben-Haim Y: Info-gap decision theory for engineering design. In Engineering Design Reliability Handbook. Edited by Nikolaidis E, Ghiocel D, Singhal S. Boca Raton: CRC Press; 2005:11.1-11.30.
  • [26]Carmel Y, Ben-Haim Y: Info-gap robust-satisficing model of foraging behavior: Do foragers optimize or satisfice? Am Naturalist 2005, 166:633-641.
  • [27]Klir G, Folger T: Fuzzy Sets, Uncertainty, and Information. New York: Prentice-Hall; 1988.
  • [28]Dubois D, Prade H: Possibility Theory: An Approach to Computerized Processing of Uncertainty. New York: Plenum Press; 1986.
  • [29]Hall J, Lempert R, Keller K, Hackbarth A, Mijere C, McInerney D: Robust climate policies under uncertainty: a comparison of robust decision making and info-gap methods. Risk Anal 2012, 32(10):1657-1672.
  • [30]Ben-Haim Y: Info-gap forecasting and the advantage of sub-optimal models. Eur J Operational Res 2009, 197:203-213.
  • [31]Ben-Haim Y: Robust satisficing and the probability of survival. Intl J of Syst Sci[http://www.tandfonline.com/doi/full/10.1080/00207721.2012.684906]
  • [32]Grassly NC, Morgan M, Walker N, Garnett G, Stanecki K, Stover J, Brown T, Ghys PD: Uncertainty in estimates of HIV/AIDS: the estimation and application of plausibility bounds. Sex Transm Infect 2004, Suppl I:i31-i38.
  • [33]Cohen T, Colijn C, Finklea B, Murray M: Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission. J R Soc Interface 2007, 4(14):523-531.
  • [34]Dye C, Garnett GP, Sleeman K, Williams B: Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly observed short-course therapy. Lancet 1998, 352(9144):1886-1891.
  • [35]Cohen T, Lipsitch M, Walensky RP, Murray M: Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. Proc Natl Acad Sci USA 2006, 103(18):7042-7047.
  • [36]Wools-Kaloustian K, Kimaiyo S, Diero L, Siika A, Sidle J, Yiannoutsos C, Musick B, Einterz R, Fife K, Tierney WM: Viability and effectiveness of large-scale HIV treatment initiatives in sub-Saharan Africa: experience from western Kenya. AIDS 2006, 20:41-48.
  • [37]Vynnycky E, Nagelkerke N, Borgdorff MW, van Soolingen D, van Embden JD, Fine PE: The effect of age and study duration on the relationship between ‘clustering’ of DNA fingerprint patterns and the proportion of tuberculosis disease attributable to recent transmission. Epidemiol Infect 2001, 126:43-62.
  • [38]Vynnycky E, Fine PE: The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect 1997, 119(2):183-201.
  • [39]Vynnycky E, Borgdorff MW, Leung CC, Tam CM, Fine PE: Limited impact of tuberculosis control in Hong Kong: attributable to high risks of reactivation disease. Epidemiol Infect 2008, 136(7):943-952.
  • [40]Verver S, Warren RM, Beyers N, Richardson M, van der Spuy GD, Borgdorff MW, Enarson DA, Behr MA, van Helden PD: Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med 2005, 171(12):1430-1435.
  文献评价指标  
  下载次数:131次 浏览次数:45次