期刊论文详细信息
BMC Genomics
Transcriptional profiles of bovine in vivo pre-implantation development
Xiuchun (Cindy) Tian3  Jingbo Chen1  Yijun Ruan5  Rachel O’Neill4  Jinbo Bi2  Yong Tang3  Craig Obergfell4  Xinbao Zheng1  Oscar Luo5  Hong Dong1  Jiangwen Sun2  Zongliang Jiang3 
[1] Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, P.R. China;Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, USA;Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA;Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA;The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
关键词: Mouse;    Human;    Bovine;    Hub genes;    Stage specific module;    RNA-seq;    Embryonic genome activation;    Pre-implantation development;   
Others  :  1140922
DOI  :  10.1186/1471-2164-15-756
 received in 2014-05-15, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology.

Results

Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development.

Conclusions

This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.

【 授权许可】

   
2014 Jiang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325152943150.pdf 3540KB PDF download
Figure 6. 102KB Image download
Figure 5. 176KB Image download
Figure 4. 96KB Image download
Figure 3. 122KB Image download
Figure 2. 79KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Schultz RM: The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 2002, 8(4):323-331.
  • [2]Schultz RM: Regulation of zygotic gene activation in the mouse. Bioessays 1993, 15(8):531-538.
  • [3]Hamatani T, Carter MG, Sharov AA, Ko MS: Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004, 6(1):117-131.
  • [4]Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M: A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 2004, 6(1):133-144.
  • [5]Braude P, Bolton V, Moore S: Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 1988, 332(6163):459-461.
  • [6]Telford NA, Watson AJ, Schultz GA: Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 1990, 26(1):90-100.
  • [7]Memili E, First NL: Developmental changes in RNA polymerase II in bovine oocytes, early embryos, and effect of alpha-amanitin on embryo development. Mol Reprod Dev 1998, 51(4):381-389.
  • [8]Misirlioglu M, Page GP, Sagirkaya H, Kaya A, Parrish JJ, First NL, Memili E: Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc Natl Acad Sci U S A 2006, 103(50):18905-18910.
  • [9]Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F, Ng HH, Lewin HA, Cowan C, Zhong S: Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res 2010, 20(6):804-815.
  • [10]Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E: Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci U S A 2014, 111(11):4139-4144.
  • [11]Kues WA, Sudheer S, Herrmann D, Carnwath JW, Havlicek V, Besenfelder U, Lehrach H, Adjaye J, Niemann H: Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc Natl Acad Sci U S A 2008, 105(50):19768-19773.
  • [12]Driver AM, Penagaricano F, Huang W, Ahmad KR, Hackbart KS, Wiltbank MC, Khatib H: RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics 2012, 13:118. BioMed Central Full Text
  • [13]Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ: RNA-seq analysis of single bovine blastocysts. BMC Genomics 2013, 14:350. BioMed Central Full Text
  • [14]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [15]Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011, 12(2):87-98.
  • [16]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95(25):14863-14868.
  • [17]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4(1):1544-1128.
  • [18]Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559. BioMed Central Full Text
  • [19]Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu JY, Horvath S, Fan G: Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013, 500(7464):593-597.
  • [20]Langfelder P, Luo R, Oldham MC, Horvath S: Is my network module preserved and reproducible? PLoS Comput Biol 2011, 7(1):e1001057.
  • [21]Everts-van der Wind A, Larkin DM, Green CA, Elliott JS, Olmstead CA, Chiu R, Schein JE, Marra MA, Womack JE, Lewin HA: A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution. Proc Natl Acad Sci U S A 2005, 102(51):18526-18531.
  • [22]Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigó R, Hamernik DL, Kappes SM, Lewin HA, Lynn DJ, Nicholas FW, Reymond A, Rijnkels M, Skow LC, Zdobnov EM, Schook L, Womack J, Alioto T, Antonarakis SE, Astashyn A, Chapple CE, Chen HC, Chrast J, Câmara F, Ermolaeva O, Bovine Genome Sequencing and Analysis Consortium, et al.: The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 2009, 324(5926):522-528.
  • [23]Van Soom A, Boerjan ML, Bols PE, Vanroose G, Lein A, Coryn M, de Kruif A: Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol Reprod 1997, 57(5):1041-1049.
  • [24]Niakan KK, Han J, Pedersen RA, Simon C, Pera RA: Human pre-implantation embryo development. Development 2012, 139(5):829-841.
  • [25]Huang S: Non-genetic heterogeneity of cells in development: more than just noise. Development 2009, 136(23):3853-3862.
  • [26]Ito K, Suda T: Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014, 15(4):243-256.
  • [27]Li L, Zheng P, Dean J: Maternal control of early mouse development. Development 2010, 137(6):859-870.
  • [28]Huang W, Khatib H: Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq. BMC Genomics 2010, 11:711. BioMed Central Full Text
  • [29]Lonergan P, Rizos D, Gutierrez-Adan A, Moreira PM, Pintado B, de la Fuente J, Boland MP: Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol Reprod 2003, 69(4):1424-1431.
  • [30]Gutierrez-Adan A, Rizos D, Fair T, Moreira PN, Pintado B, de la Fuente J, Boland MP, Lonergan P: Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol Reprod Dev 2004, 68(4):441-448.
  • [31]Wrenzycki C, Herrmann D, Lucas-Hahn A, Korsawe K, Lemme E, Niemann H: Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod Fertil Dev 2005, 17(1–2):23-35.
  • [32]Barnes FL, Eyestone WH: Early cleavage and the maternal zygotic transition in bovine embryos. Theriogenology 1990, 33(1):141-152.
  • [33]Farin PW, Piedrahita JA, Farin CE: Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 2006, 65(1):178-191.
  • [34]Warburg O: On the origin of cancer cells. Science 1956, 123(3191):309-314.
  • [35]Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324(5930):1029-1033.
  • [36]Ledgard AM, Lee RS, Peterson AJ: Expression of genes associated with allantois emergence in ovine and bovine conceptuses. Mol Reprod Dev 2006, 73(9):1084-1093.
  • [37]Moreau J, Lebreton S, Iouzalen N, Mechali M: Characterization of Xenopus RalB and its involvement in F-actin control during early development. Dev Biol 1999, 209(2):268-281.
  • [38]Peschard P, McCarthy A, Leblanc-Dominguez V, Yeo M, Guichard S, Stamp G, Marshall CJ: Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol 2012, 22(21):2063-2068.
  • [39]Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99(3):247-257.
  • [40]Li E: Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002, 3(9):662-673.
  • [41]Beyhan Z, Forsberg EJ, Eilertsen KJ, Kent-First M, First NL: Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring. Mol Reprod Dev 2007, 74(1):18-27.
  • [42]Niemann H, Lucas-Hahn A: Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod Domest Anim 2012, 47(Suppl 5):2-10.
  • [43]Smith SL, Everts RE, Tian XC, Du F, Sung LY, Rodriguez-Zas SL, Jeong BS, Renard JP, Lewin HA, Yang X: Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci U S A 2005, 102(49):17582-17587.
  • [44]Barros CM, Satrapa RA, Castilho AC, Fontes PK, Razza EM, Ereno RL, Nogueira MF: Effect of superstimulatory treatments on the expression of genes related to ovulatory capacity, oocyte competence and embryo development in cattle. Reprod Fertil Dev 2012, 25(1):17-25.
  • [45]Chu T, Dufort I, Sirard MA: Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 2012, 77(9):1928-1938.
  • [46]Mundim TC, Ramos AF, Sartori R, Dode MA, Melo EO, Gomes LF, Rumpf R, Franco MM: Changes in gene expression profiles of bovine embryos produced in vitro, by natural ovulation, or hormonal superstimulation. Genet Mol Res 2009, 8(4):1398-1407.
  • [47]Urrego R, Rodriguez-Osorio N, Niemann H: Epigenetic disorders and altered in gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics 2014, 9(6):803-815.
  • [48]Mapletoft RJ, Steward KB, Adams GP: Recent advances in the superovulation in cattle. Reprod Nutr Dev 2002, 42(6):601-611.
  • [49]Hayakawa H, Hirai T, Takimoto A, Ideta A, Aoyagi Y: Superovulation and embryo transfer in Holstein cattle using sexed sperm. Theriogenology 2009, 71(1):68-73.
  • [50]Lee W, Song K, Lim K, Lee S, Lee B, Jang G: Influence of Factors during Superovulation on Embryo Production in Korean Holstein Cattle. J Vet Med Sci 2012, 74(2):167-174.
  • [51]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7(3):562-578.
  • [52]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [53]Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer; 2001.
  • [54]Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008, 24(5):719-720.
  • [55]Hu Z, Mellor J, Wu J, DeLisi C: VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 2004, 5:17. BioMed Central Full Text
  • [56]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22(13):1600-1607.
  • [57]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  文献评价指标  
  下载次数:13次 浏览次数:15次