| BMC Medical Genetics | |
| Alternative splicing in osteoclasts and Paget’s disease of bone | |
| Sophie Roux3  Jacques P Brown1  Laëtitia Michou1  Stephen McManus3  Martine Bisson3  Gino Laberge3  Roscoe Klinck2  | |
| [1] CHU de Québec, Research Centre and Division of Rheumatology, Department of Medicine, Laval University, Quebec City, PQ, Canada;RNomics platform, Faculty of Medicine, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, PQ, Canada;Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Sherbrooke, 3001, 12th avenue N, Sherbrooke, J1H5N4, PQ, Canada | |
| 关键词: p62/SQSTM1; Paget’s disease of bone; Osteoclast; Alternative splicing; | |
| Others : 1090984 DOI : 10.1186/s12881-014-0098-1 |
|
| received in 2014-04-11, accepted in 2014-08-07, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Mutations in the SQSTM1/p62 gene have been reported in Paget’s disease of bone (PDB), but they are not sufficient to induce the pagetic osteoclast (OC) phenotype. We hypothesized that specific RNA isoforms of OC-related genes may contribute to the overactivity of pagetic OCs, along with other genetic predisposing factors.
Methods
Alternative splicing (AS) events were studied using a PCR-based screening strategy in OC cultures from 29 patients with PDB and 26 healthy donors (HD), all genotyped for the p62P392L mutation. Primer pairs targeting 5223 characterized AS events were used to analyze relative isoform ratios on pooled cDNA from samples of the four groups (PDB, PDBP392L, HD, HDP392L). Of the 1056 active AS events detected in the screening analysis, 192 were re-analyzed on non-amplified cDNA from each subject of the whole cohort.
Results
This analysis led to the identification of six AS events significantly associated with PDB, but none with p62P392L. The corresponding genes included LGALS8, RHOT1, CASC4, USP4, TBC1D25, and PIDD. In addition, RHOT1 and LGALS8 genes were upregulated in pagetic OCs, as were CASC4 and RHOT1 genes in the presence of p62P392L. Finally, we showed that the proteins encoded by LGALS8, RHOT1, USP4, TBC1D25, and PIDD were expressed in human OCs.
Conclusion
This study allowed the identification of hitherto unknown players in OC biology, and our findings of a differential AS in pagetic OCs may generate new concepts in the pathogenesis of PDB.
【 授权许可】
2014 Klinck et al.; licensee BioMed Central Ltd
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150128164717338.pdf | 1340KB | ||
| Figure 4. | 65KB | Image | |
| Figure 3. | 43KB | Image | |
| Figure 2. | 64KB | Image | |
| Figure 1. | 26KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Boyle WJ, Simonet WS, Lacey DL: Osteoclast differentiation and activation. Nature 2003, 423(6937):337-342.
- [2]Quinn JM, Morfis M, Lam MH, Elliott J, Kartsogiannis V, Williams ED, Gillespie MT, Martin TJ, Sexton PM: Calcitonin receptor antibodies in the identification of osteoclasts. Bone 1999, 25(1):1-8.
- [3]Roodman GD, Windle JJ: Paget disease of bone. J Clin Invest 2005, 115(2):200-208.
- [4]Kurihara N, Hiruma Y, Yamana K, Michou L, Rousseau C, Morissette J, Galson DL, Teramachi J, Zhou H, Dempster DW, Windle JJ, Brown JP, Roodman GD: Contributions of the measles virus nucleocapsid gene and the SQSTM1/p62(P392L) mutation to Paget’s disease. Cell Metab 2011, 13(1):23-34.
- [5]Chamoux E, Couture J, Bisson M, Morissette J, Brown JP, Roux S: The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol 2009, 23(10):1668-1680.
- [6]Chung PY, Van Hul W: Paget’s disease of bone: evidence for complex pathogenetic interactions. Semin Arthritis Rheum 2012, 41(5):616-641.
- [7]Morissette J, Laurin N, Brown JP: Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget’s disease of bone. J Bone Miner Res 2006, 21(Suppl 2):P38-P44.
- [8]Chamoux E, McManus S, Laberge G, Bisson M, Roux S: Involvement of kinase PKC-zeta in the p62/p62(P392L)-driven activation of NF-kappaB in human osteoclasts. Biochim Biophys Acta 2013, 1832(3):475-484.
- [9]Daroszewska A, Hof RJ V ’t, Rojas JA, Layfield R, Landao-Basonga E, Rose L, Rose K, Ralston SH: A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum Mol Genet 2011, 20(14):2734-2744.
- [10]Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, Dunlop MG, Fraser WD, Hooper MJ, Isaia G, Nicholson GC, del Pino MJ, Gonzalez-Sarmiento R, di Stefano M, Tenesa A, Walsh JP, Ralston SH: Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 2010, 42(6):520-524.
- [11]Albagha OM, Wani SE, Visconti MR, Alonso N, Goodman K, Brandi ML, Cundy T, Chung PY, Dargie R, Devogelaer JP, Falchetti A, Fraser WD, Gennari L, Gianfrancesco F, Hooper MJ, Van Hul W, Isaia G, Nicholson GC, Nuti R, Papapoulos S, Montes Jdel P, Ratajczak T, Rea SL, Rendina D, Gonzalez-Sarmiento R, Di Stefano M, Ward LC, Walsh JP, Ralston SH: Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat Genet 2011, 43(7):685-689.
- [12]Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, Drapeau G, Verreault J, Raymond V, Morissette J: Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet 2001, 69(3):528-543.
- [13]Laurin N, Brown JP, Morissette J, Raymond V: Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 2002, 70(6):1582-1588.
- [14]Roux S, Lambert-Comeau P, Saint-Pierre C, Lepine M, Sawan B, Parent JL: Death receptors, Fas and TRAIL receptors, are involved in human osteoclast apoptosis. Biochem Biophys Res Commun 2005, 333(1):42-50.
- [15]Klinck R, Bramard A, Inkel L, Dufresne-Martin G, Gervais-Bird J, Madden R, Paquet ER, Koh C, Venables JP, Prinos P, Jilaveanu-Pelmus M, Wellinger R, Rancourt C, Chabot B, Abou Elela S: Multiple alternative splicing markers for ovarian cancer. Cancer Res 2008, 68(3):657-663.
- [16]Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, Durand M, Couture S, Froehlich U, Lapointe E, Lucier JF, Thibault P, Rancourt C, Tremblay K, Prinos P, Chabot B, Elela SA: Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 2009, 16(6):670-676.
- [17]Thierry-Mieg D, Thierry-Mieg J: AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 2006, 7(Suppl 1):S12 11-S12 14. BioMed Central Full Text
- [18]Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007, 8(2):R19. BioMed Central Full Text
- [19]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003, 100(16):9440-9445.
- [20]Michou L, Chamoux E, Couture J, Morissette J, Brown JP, Roux S: Gene expression profile in osteoclasts from patients with Paget’s disease of bone. Bone 2010, 46(3):598-603.
- [21]McManus S, Roux S: The adaptor protein p62/SQSTM1 in osteoclast signaling pathways. J Mol Signal 2012, 7:1. BioMed Central Full Text
- [22]Hodge JM, Kirkland MA, Aitken CJ, Waugh CM, Myers DE, Lopez CM, Adams BE, Nicholson GC: Osteoclastic potential of human CFU-GM: biphasic effect of GM-CSF. J Bone Miner Res 2004, 19(2):190-199.
- [23]Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452(7184):230-233.
- [24]Venables JP: Aberrant and alternative splicing in cancer. Cancer Res 2004, 64(21):7647-7654.
- [25]Tazi J, Bakkour N, Stamm S: Alternative splicing and disease. Biochim Biophys Acta 2009, 1792(1):14-26.
- [26]Beyens G, Wuyts W, Cleiren E, de Freitas F, Tiegs R, Van Hul W: Identification and molecular characterization of a novel splice-site mutation (G1205C) in the SQSTM1 gene causing Paget’s disease of bone in an extended American family. Calcif Tissue Int 2006, 79(5):281-288.
- [27]Cavey JR, Ralston SH, Hocking LJ, Sheppard PW, Ciani B, Searle MS, Layfield R: Loss of ubiquitin-binding associated with Paget’s disease of bone p62 (SQSTM1) mutations. J Bone Miner Res 2005, 20(4):619-624.
- [28]Susani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R, Villa A, Orchard P, Vezzoni P, Albertini A, Frattini A, Pagani F: TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 2004, 24(3):225-235.
- [29]Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, Ramasamy K, Mullin K, Menon R, Sampson AJ, Hsiao MY, Elliott KJ, Velicelebi G, Moscarillo T, Hyman BT, Wagner SL, Becker KD, Blacker D, Tanzi RE: Family-based association between Alzheimer’s disease and variants in UBQLN1. N Engl J Med 2005, 352(9):884-894.
- [30]Moscat J, Diaz-Meco MT, Wooten MW: Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 2007, 32(2):95-100.
- [31]Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC: Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 2008, 118(5):1858-1866.
- [32]Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G: The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003, 424(6950):801-805.
- [33]Sundaram K, Shanmugarajan S, Rao DS, Reddy SV: Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology 2011, 152(11):4180-4189.
- [34]Frederick A, Rolfe M, Chiu MI: The human UNP locus at 3p21.31 encodes two tissue-selective, cytoplasmic isoforms with deubiquitinating activity that have reduced expression in small cell lung carcinoma cell lines. Oncogene 1998, 16(2):153-165.
- [35]Fan YH, Yu Y, Mao RF, Tan XJ, Xu GF, Zhang H, Lu XB, Fu SB, Yang J: USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death Differ 2011, 18(10):1547-1560.
- [36]Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y: TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One 2008, 3(12):e4064.
- [37]Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, Wang P: Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J 2012, 441(3):979-986.
- [38]Gutierrez C, Schiff R: HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 2011, 135(1):55-62.
- [39]Fransson A, Ruusala A, Aspenstrom P: Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 2003, 278(8):6495-6502.
- [40]Carcamo C, Pardo E, Oyanadel C, Bravo-Zehnder M, Bull P, Caceres M, Martinez J, Massardo L, Jacobelli S, Gonzalez A, Soza A: Galectin-8 binds specific beta1 integrins and induces polarized spreading highlighted by asymmetric lamellipodia in Jurkat T cells. Exp Cell Res 2006, 312(4):374-386.
- [41]Levy Y, Ronen D, Bershadsky AD, Zick Y: Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J Biol Chem 2003, 278(16):14533-14542.
- [42]Nishi N, Shoji H, Seki M, Itoh A, Miyanaka H, Yuube K, Hirashima M, Nakamura T: Galectin-8 modulates neutrophil function via interaction with integrin alphaM. Glycobiology 2003, 13(11):755-763.
- [43]Eshkar Sebban L, Ronen D, Levartovsky D, Elkayam O, Caspi D, Aamar S, Amital H, Rubinow A, Golan I, Naor D, Zick Y: The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation. J Immunol 2007, 179(2):1225-1235.
- [44]Norambuena A, Metz C, Vicuna L, Silva A, Pardo E, Oyanadel C, Massardo L, Gonzalez A, Soza A: Galectin-8 induces apoptosis in Jurkat T cells by phosphatidic acid-mediated ERK1/2 activation supported by protein kinase A down-regulation. J Biol Chem 2009, 284(19):12670-12679.
- [45]Janssens S, Tinel A, Lippens S, Tschopp J: PIDD mediates NF-kappaB activation in response to DNA damage. Cell 2005, 123(6):1079-1092.
- [46]Tinel A, Janssens S, Lippens S, Cuenin S, Logette E, Jaccard B, Quadroni M, Tschopp J: Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 2007, 26(1):197-208.
- [47]Cuenin S, Tinel A, Janssens S, Tschopp J: p53-induced protein with a death domain (PIDD) isoforms differentially activate nuclear factor-kappaB and caspase-2 in response to genotoxic stress. Oncogene 2008, 27(3):387-396.
- [48]Huang L, Han D, Yang X, Qin B, Ji G, Yu L: PIDD4, a novel PIDD isoform without the LRR domain, can independently induce cell apoptosis in cytoplasm. Biochem Biophys Res Commun 2011, 407(1):86-91.
- [49]Helfrich MH, Hocking LJ: Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys 2008, 473(2):172-182.
- [50]Hocking LJ, Whitehouse C, Helfrich MH: Autophagy: a new player in skeletal maintenance? J Bone Miner Res 2012, 27(7):1439-1447.
- [51]Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M: OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 2011, 192(5):839-853.
PDF