期刊论文详细信息
BMC Evolutionary Biology
Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants
Pamela S Soltis3  Douglas E Soltis2  Gane Ka-Shu Wong1  André S Chanderbali3  Xinshuai Qi2 
[1] BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China;Department of Biology, University of Florida, Gainesville, FL, USA;Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
关键词: Gene expression;    Gene duplication;    Land plant evolution;    GSK3;   
Others  :  1086882
DOI  :  10.1186/1471-2148-13-143
 received in 2013-05-09, accepted in 2013-07-02,  发布年份 2013
PDF
【 摘 要 】

Background

GSK3 (glycogen synthase kinase 3) genes encode signal transduction proteins with roles in a variety of biological processes in eukaryotes. In contrast to the low copy numbers observed in animals, GSK3 genes have expanded into a multi-gene family in land plants (embryophytes), and have also evolved functions in diverse plant specific processes, including floral development in angiosperms. However, despite previous efforts, the phylogeny of land plant GSK3 genes is currently unclear. Here, we analyze genes from a representative sample of phylogenetically pivotal taxa, including basal angiosperms, gymnosperms, and monilophytes, to reconstruct the evolutionary history and functional diversification of the GSK3 gene family in land plants.

Results

Maximum Likelihood phylogenetic analyses resolve a gene tree with four major gene duplication events that coincide with the emergence of novel land plant clades. The single GSK3 gene inherited from the ancestor of land plants was first duplicated along the ancestral branch to extant vascular plants, and three subsequent duplications produced three GSK3 loci in the ancestor of euphyllophytes, four in the ancestor of seed plants, and at least five in the ancestor of angiosperms. A single gene in the Amborella trichopoda genome may be the sole survivor of a sixth GSK3 locus that originated in the ancestor of extant angiosperms. Homologs of two Arabidopsis GSK3 genes with genetically confirmed roles in floral development, AtSK11 and AtSK12, exhibit floral preferential expression in several basal angiosperms, suggesting evolutionary conservation of their floral functions. Members of other gene lineages appear to have independently evolved roles in plant reproductive tissues in individual taxa.

Conclusions

Our phylogenetic analyses provide the most detailed reconstruction of GSK3 gene evolution in land plants to date and offer new insights into the origins, relationships, and functions of family members. Notably, the diversity of this “green” branch of the gene family has increased in concert with the increasing morphological and physiological complexity of land plant life forms. Expression data for seed plants indicate that the functions of GSK3 genes have also diversified during evolutionary time.

【 授权许可】

   
2013 Qi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116020357823.pdf 4460KB PDF download
Figure 6. 151KB Image download
Figure 5. 169KB Image download
Figure 4. 122KB Image download
Figure 3. 116KB Image download
Figure 2. 77KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Saidi Y, Hearn TJ, Coates JC: Function and evolution of “green” GSK3/Shaggy-like kinases. Trends Plant Sci 2012, 17:39-46.
  • [2]Petersen CP, Reddien PW: Wnt signaling and the polarity of the primary body axis. Cell 2009, 139:1056-1068.
  • [3]Schilde C, Araki T, Williams H, Harwood A, Williams JG: GSK3 is a multifunctional regulator of Dictyostelium development. Development 2004, 131:4555-4565.
  • [4]Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003, 116(Pt 7):1175-1186.
  • [5]Dornelas MC, Lejeune B, Dron M, Kreis M: The Arabidopsis SHAGGY-related protein kinase (ASK) gene family: structure, organization and evolution. Gene 1998, 212:249-257.
  • [6]Dornelas MC, Van Lammeren AAM, Kreis M: Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. The Plant Journal 2000, 21:419-429.
  • [7]Jonak C, Hirt H: Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci 2002, 7:457-461.
  • [8]Richard O, Paquet N, Haudecoeur E, Charrier B: Organization and expression of the GSK3/shaggy kinase gene family in the moss Physcomitrella patens suggest early gene multiplication in land plants and an ancestral response to osmotic stress. J Mol Evol 2005, 61:99-113.
  • [9]Charrier B, Champion A, Henry Y, Kreis M: Expression Profiling of the Whole Arabidopsis Shaggy-Like Kinase Multigene Family by Real-Time Reverse Transcriptase-Polymerase Chain Reaction. Plant Physiol 2002, 130:577-590.
  • [10]Yoo M-J, Albert V, Soltis P, Soltis D: Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants. BMC Plant Biology 2006, 6:3. BioMed Central Full Text
  • [11]Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 2002, 51:588-598.
  • [12]Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 2012, 40:1178-1186.
  • [13]Soltis DE, Albert VA, Leebens-Mack J, Palmer JD, Wing RA, de Pamphilis CW, Ma H, Carlson JE, Altman N, Kim S, Wall PK, Zuccolo A, Soltis PS: The Amborella genome: an evolutionary reference for plant biology. Genome Biol 2008, 9:402. BioMed Central Full Text
  • [14]Nickrent DL, Parkinson CL, Palmer JD, Duff RJ: Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 2000, 17:1885-1895.
  • [15]Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD: Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 2001, 409:618-622.
  • [16]Edwards D, Feehan J: Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature 1980, 287:41-42.
  • [17]Shimodaira H: An Approximately Unbiased Test of Phylogenetic Tree Selection. Syst Biol 2002, 51:492-508.
  • [18]Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW: Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473:97-100.
  • [19]Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH: The frequency of polyploid speciation in vascular plants. PNAS 2009, 106:13875-13879.
  • [20]Bowers JE, Chapman BA, Rong J, Paterson AH: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422:433-438.
  • [21]Shoemaker RC, Schlueter J, Doyle JJ: Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 2006, 9:104-109.
  • [22]Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH: Multiple Paleopolyploidizations during the Evolution of the Compositae Reveal Parallel Patterns of Duplicate Gene Retention after Millions of Years. Mol Biol Evol 2008, 25:2445-2455.
  • [23]Cenci A, Combes M-C, Lashermes P: Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. Mol Genet Genomics 2010, 283:493-501.
  • [24]Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Fabbro CD, Alaux M, Gaspero GD, Dumas V, et al.: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449:463-467.
  • [25]Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers J, McKain M, McNeal J, Rolf M, Ruzicka D, Wafula E, Wickett N, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter E, Deyholos M, Kutchan T, Chanderbali A, Soltis P, Stevenson D, McCombie R, Pires J, Wong G, Soltis D, dePamphilis C: A genome triplication associated with early diversification of the core eudicots. Genome Biol 2012, 13:R3. BioMed Central Full Text
  • [26]Wang X, Kang D, Feng S, Serino G, Schwechheimer C, Wei N: CSN1 N-terminal-dependent activity is required for Arabidopsis development but not for Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9 signalosome. Mol Biol Cell 2002, 13:646-655.
  • [27]Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. Nat Genet 2005, 37:501-506.
  • [28]Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A: Geneious v5.4. 2011. Available from http://www.geneious.com webcite
  • [29]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 2002, 30:3059-3066.
  • [30]Felsenstein J: Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981, 17:368-376.
  • [31]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [32]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17:1246-1247.
  • [33]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 2008, 5:621-628.
  文献评价指标  
  下载次数:36次 浏览次数:3次