期刊论文详细信息
BMC Microbiology
Clonal diversity of Acinetobacter baumannii clinical isolates revealed by a snapshot study
Zhiyong Zong2  Yanyu Gao1  Rujia Yu1  Fu Qiao2  Xiaohui Wang1 
[1] Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China;Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
关键词: blaOXA-23;    MLST;    PFGE;    Clonal relatedness;    Acinetobacter baumannii;   
Others  :  1142826
DOI  :  10.1186/1471-2180-13-234
 received in 2013-05-27, accepted in 2013-10-18,  发布年份 2013
PDF
【 摘 要 】

Background

Acinetobacter baumannii is a notorious opportunistic pathogen mainly associated with hospital-acquired infections. Studies on the clonal relatedness of isolates could lay the foundation for effective infection control. A snapshot study was performed to investigate the clonal relatedness of A. baumannii clinical isolates in our local settings.

Results

Among 82 non-repetitive Acinetobacter spp. clinical isolates that were recovered during a period of four days in 13 hospitals in Sichuan, Southwest China, 67 isolates were identified as A. baumannii. Half of the 67 A. baumannii isolates were non-susceptible to carbapenems. blaOXA-23 was the only acquired carbapenemase gene detected, present in 40 isolates including five carbapenem-susceptible ones. The isolates belonged to 62 pulsotypes determined by PFGE and 31 sequence types (ST) by multi-locus sequence typing. Forty-three isolates belonged to the globally-disseminated clonal complex 92, among which ST75, ST92 and ST208 were the most common sequence types.

Conclusions

Clinical isolates of A. baumannii were diverse in clonality in this snapshot study. However, most of the isolates belonged to the globally-distributed clonal complex CC92. ST75, ST92 and ST208 were the most common types in our region. In particular, ST208 might be an emerging lineage carrying blaOXA-23.

【 授权许可】

   
2013 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328164210817.pdf 880KB PDF download
Figure 2. 113KB Image download
Figure 1. 124KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Peleg AY, Seifert H, Paterson DL: Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008, 21:538-582.
  • [2]Dijkshoorn L, Nemec A, Seifert H: An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007, 5:939-951.
  • [3]Zong Z, Qiao F, Yin W, Xu S: A large-scale survey on the point prevalence of healthcare-associated infections in southwest China. In IDWeek. San Diego, CA: Poster Nr; 2012:1171.
  • [4]Zong Z, Lu X, Valenzuela JK, Partridge SR, Iredell J: An outbreak of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemase in western China. Int J Antimicrob Agents 2008, 31:50-54.
  • [5]Li Y, Lu Y, Wang S: Mohnarin report 2010: surveillance of antimicrobial resistance in nonfermenting gram-negative bacteria. Chin J Nosocomiol 2011, 21:5133-5137. (behalf of Mohnarin)
  • [6]Zhou H, Yang Q, Yu YS, Wei ZQ, Li LJ: Clonal spread of imipenem-resistant Acinetobacter baumannii among different cities of China. J Clin Microbiol 2007, 45:4054-4057.
  • [7]Wang X, Zong Z, Lu X: Tn2008 is a major vehicle carrying blaOXA-23 in Acinetobacter baumannii from China. Diagn Microbiol Infect Dis 2011, 69:218-222.
  • [8]Hamouda A, Evans BA, Towner KJ, Amyes SG: Characterization of epidemiologically unrelated Acinetobacter baumannii isolates from four continents by use of multilocus sequence typing, pulsed-field gel electrophoresis, and sequence-based typing of blaOXA-51-like genes. J Clin Microbiol 2010, 48:2476-2483.
  • [9]Fu Y, Zhou J, Zhou H, Yang Q, Wei Z, Yu Y, Li L: Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother 2010, 65:644-650.
  • [10]Adams-Haduch JM, Onuoha EO, Bogdanovich T, Tian GB, Marschall J, Urban CM, Spellberg BJ, Rhee D, Halstead DC, Pasculle AW, et al.: Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J Clin Microbiol 2011, 49:3849-3854.
  • [11]Mugnier PD, Poirel L, Naas T, Nordmann P: Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis 2010, 16:35-40.
  • [12]Seifert H, Dolzani L, Bressan R, van der Reijden T, Van Strijen B, Stefanik D, Heersma H, Dijkshoorn L: Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol 2005, 43:4328-4335.
  • [13]Karah N, Sundsfjord A, Towner K, Samuelsen O: Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resist Updat 2012, 15:237-247.
  • [14]Zarrilli R, Pournaras S, Giannouli M, Tsakris A: Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2013, 41:11-19.
  • [15]Krawczyk B, Lewandowski K, Kur J: Comparative studies of the Acinetobacter genus and the species identification method based on the recA sequences. Mol Cell Probes 2002, 16:1-11.
  • [16]CLSI: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. Wayne, PA: The Clinical and Laboratory Standards Institute; 2011.
  • [17]Comite’de lAntibiogramme de la Socie’te’ Franc¸aise de Microbiologie: Communique’. Paris, France: Socie´te´ Franc¸aise de Microbiologie; 2009.
  • [18]Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM: Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006, 27:351-353.
  • [19]Higgins PG, Lehmann M, Seifert H: Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2010, 35:305.
  • [20]Ellington MJ, Kistler J, Livermore DM, Woodford N: Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 2007, 59:321-322.
  • [21]Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P: Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 2000, 44:622-632.
  • [22]Bradford PA, Bratu S, Urban C, Visalli M, Mariano N, Landman D, Rahal JJ, Brooks S, Cebular S, Quale J: Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin Infect Dis 2004, 39:55-60.
  • [23]Van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P, et al.: Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 2007, 13(Suppl 3):1-46.
  • [24]Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H, Rodriguez-Valera F: Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 2005, 43:4382-4390.
  • [25]Hamidian M, Hall RM: AbaR4 replaces AbaR3 in a carbapenem-resistant Acinetobacter baumannii isolate belonging to global clone 1 from an Australian hospital. J Antimicrob Chemother 2011, 66:2484-2491.
  • [26]Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S: The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 2010, 5:e10034.
  文献评价指标  
  下载次数:22次 浏览次数:9次