期刊论文详细信息
BMC Microbiology
Investigations into genome diversity of Haemophilus influenzae using whole genome sequencing of clinical isolates and laboratory transformants
Derek W Hood2  E Richard Moxon1  Julian Parkhill3  Stephen D Bentley3  Peter M Power1 
[1] University of Oxford Department of Paediatrics, Medical Sciences Division, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK;Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
关键词: Transformation;    Population structure;    Genome sequence;    Haemophilus influenzae;   
Others  :  1144947
DOI  :  10.1186/1471-2180-12-273
 received in 2012-06-25, accepted in 2012-10-17,  发布年份 2012
PDF
【 摘 要 】

Background

Haemophilus influenzae is an important human commensal pathogen associated with significant levels of disease. High-throughput DNA sequencing was used to investigate differences in genome content within this species.

Results

Genomic DNA sequence was obtained from 85 strains of H. influenzae and from other related species, selected based on geographical site of isolation, disease association and documented genotypic and phenotypic differences. When compared by Mauve alignment these indicated groupings of H. influenzae that were consistent with previously published analyses; capsule expressing strains fell into two distinct groups and those of serotype b (Hib) were found in two closely positioned lineages. For 18 Hib strains representing both lineages we found many discrete regions (up to 40% of the total genome) displaying sequence variation when compared to a common reference strain. Evidence that this naturally occurring pattern of inter-strain variation in H. influenzae can be mediated by transformation was obtained through sequencing DNA obtained from a pool of 200 independent transformants of a recipient (strain Rd) using donor DNA from a heterologous Hib strain (Eagan).

Conclusion

Much of the inter-strain variation in genome sequence in H. influenzae is likely the result of inter-strain exchanges of DNA, most plausibly through transformation.

【 授权许可】

   
2012 Power et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331054643112.pdf 968KB PDF download
Figure 4. 51KB Image download
Figure 3. 16KB Image download
Figure 2. 51KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Boissy R, Ahmed A, Janto B, Earl J, Hall BG, Hogg JS, Pusch GD, Hiller LN, Powell E, Hayes J, et al.: Comparative supragenomic analyses among the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae using a modification of the finite supragenome model. BMC Genomics 12:187.
  • [2]Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-genome. Curr Opin Genet Dev 2005, 15(6):589-594.
  • [3]Hogg J, Hu F, Janto B, Boissy R, Hayes J, Keefe R, Post J, Ehrlich G: Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 2007, 8(6):R103. BioMed Central Full Text
  • [4]Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al.: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269(5223):496-512.
  • [5]Kilian M: A taxonomic study of the genus Haemophilus, with the proposal of a new species. J Gen Microbiol 1976, 93(1):9-62.
  • [6]Musser JM, Kroll JS, Moxon ER, Selander RK: Clonal population structure of encapsulated Haemophilus influenzae. Infect Immun 1988, 56(8):1837-1845.
  • [7]Barenkamp SJ, Munson RS, Granoff DM: Subtyping isolates of Haemophilus influenzae type b by outer-membrane protein profiles. J Infect Dis 1981, 143(5):668-676.
  • [8]Barenkamp SJ, Munson RS, Granoff DM: Outer membrane protein and biotype analysis of pathogenic nontypable Haemophilus influenzae. Infect Immun 1982, 36(2):535-540.
  • [9]Sacchi CT, Alber D, Dull P, Mothershed EA, Whitney AM, Barnett GA, Popovic T, Mayer LW: High level of sequence diversity in the 16S rRNA genes of Haemophilus influenzae isolates is useful for molecular subtyping. J Clin Microbiol 2005, 43(8):3734-3742.
  • [10]Loos BG, Bernstein JM, Dryja DM, Murphy TF, Dickinson DP: Determination of the epidemiology and transmission of nontypable Haemophilus influenzae in children with otitis media by comparison of total genomic DNA restriction fingerprints. Infect Immun 1989, 57(9):2751-2757.
  • [11]Leaves NI, Jordens JZ: Development of a ribotyping scheme forHaemophilus influenzae type b. European Journal of Clinical Microbiology & Infectious 1994, 13(12):1038-1045.
  • [12]Bouchet V, Huot H, Goldstein R: Molecular Genetic Basis of Ribotyping. Clin Microbiol Rev 2008, 21(2):262.
  • [13]Meats E, Feil E, Stringer S, Cody A, Goldstein R, Kroll J, Popovic T, Spratt B: Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 2003, 41(4):1623-1636.
  • [14]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [15]Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008, 18(11):1851-1858.
  • [16]Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.
  • [17]Mell JC, Shumilina S, Hall IM, Redfield RJ: Transformation of natural genetic variation into Haemophilus influenzae genomes. PLoS Pathog 2011, 7(7):e1002151.
  • [18]Druley TE, Vallania FL, Wegner DJ, Varley KE, Knowles OL, Bonds JA, Robison SW, Doniger SW, Hamvas A, Cole FS, et al.: Quantification of rare allelic variants from pooled genomic DNA. Nat Methods 2009, 6(4):263-265.
  • [19]Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al.: The complete genome sequence of Escherichia coli K-12. Science 1997, 277(5331):1453-1462.
  • [20]Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, et al.: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2006, 2:2006 0007.
  • [21]Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, et al.: Rapid pneumococcal evolution in response to clinical interventions. Science 2011, 331(6016):430-434.
  • [22]Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW: Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009, 33(2):376-393.
  • [23]Ingram DL, Collier AM, Pendergrass E, King SH: Methods for serotyping nasopharyngeal isolates of Haemophilus influenzae: slide agglutination, Quellung reaction, countercurrent immunoelectrophoresis, latex agglutination, and antiserum agar. J Clin Microbiol 1979, 9(5):570-574.
  • [24]Herriott RM, Meyer EM, Vogt M: Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol 1970, 101(2):517-524.
  文献评价指标  
  下载次数:39次 浏览次数:24次