期刊论文详细信息
BMC Genetics
Genome-enabled predictions for binomial traits in sugar beet populations
Massimo Saccomani1  Alessandra Stella3  Chiara Broccanello1  Piergiorgio Stevanato1  Filippo Biscarini2 
[1] DAFNE, Università di Padova, 24105 Padova, Italy;Department of Bioinformatics, PTP, Via Einstein - Loc. Cascina Codazza, Lodi, Italy;IBBA-CNR, Via Einstein, 26900 Lodi, Italy
关键词: Sugar beet;    Root vigor;    Binomial traits;    Genomic predictions;   
Others  :  869584
DOI  :  10.1186/1471-2156-15-87
 received in 2014-04-07, accepted in 2014-07-04,  发布年份 2014
PDF
【 摘 要 】

Background

Genomic information can be used to predict not only continuous but also categorical (e.g. binomial) traits. Several traits of interest in human medicine and agriculture present a discrete distribution of phenotypes (e.g. disease status). Root vigor in sugar beet (B. vulgaris) is an example of binomial trait of agronomic importance. In this paper, a panel of 192 SNPs (single nucleotide polymorphisms) was used to genotype 124 sugar beet individual plants from 18 lines, and to classify them as showing “high” or “low” root vigor.

Results

A threshold model was used to fit the relationship between binomial root vigor and SNP genotypes, through the matrix of genomic relationships between individuals in a genomic BLUP (G-BLUP) approach. From a 5-fold cross-validation scheme, 500 testing subsets were generated. The estimated average cross-validation error rate was 0.000731 (0.073%). Only 9 out of 12326 test observations (500 replicates for an average test set size of 24.65) were misclassified.

Conclusions

The estimated prediction accuracy was quite high. Such accurate predictions may be related to the high estimated heritability for root vigor (0.783) and to the few genes with large effect underlying the trait. Despite the sparse SNP panel, there was sufficient within-scaffold LD where SNPs with large effect on root vigor were located to allow for genome-enabled predictions to work.

【 授权许可】

   
2014 Biscarini et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140730020239500.pdf 1317KB PDF download
91KB Image download
45KB Image download
27KB Image download
27KB Image download
111KB Image download
【 图 表 】

【 参考文献 】
  • [1]Van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS: Snp discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Med 2008, 5(3):247-252.
  • [2]Abraham G, Tye-Din JA, Bhalala OG, Kowalczyk A, Zobel J, Inouye M: Accurate and robust genomic prediction of celiac disease using statistical learning. PloS one 2013, 10(2):1004137.
  • [3]Hayes B, Bowman P, Chamberlain A, Goddard M: Invited review: genomic selection in dairy cattle: Progress and challenges. J Dairy Sci 2009, 92(2):433-443.
  • [4]Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön C-C: Genome-based prediction of testcross values in maize. Theor Appl Genet 2011, 123(2):339-350.
  • [5]Kumar S, Bink MC, Volz RK, Bus VG, Chagné D: Towards genomic selection in apple (malus× domestica borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 2012, 8(1):1-14.
  • [6]Meuwissen T, Hayes B, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157(4):1819-1829.
  • [7]González-Recio O, Gianola D, Long N, Weigel KA, Rosa GJ, Avendaño S: Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genetics 2008, 178(4):2305-2313.
  • [8]Villanueva B, Fernández J, García-Cortés L, Varona L, Daetwyler H, Toro M: Accuracy of genome-wide evaluation for disease resistance in aquaculture breeding programs. J Anim Sci 2011, 89(11):3433-3442.
  • [9]Manor O, Segal E: Predicting disease risk using bootstrap ranking and classification algorithms. PLoS Comput Biol 2013, 9(8):1003200.
  • [10]Wang C, Ding X, Wang J, Liu J, Fu W, Zhang Z, Yin Z, Zhang Q: Bayesian methods for estimating gebvs of threshold traits. Heredity 2013, 110(3):213-219.
  • [11]Ornella L, Pérez P, Tapia E, González-Camacho J, Burgueño J, Zhang X, Singh S, Vicente F, Bonnett D, Dreisigacker S, Singh R, Long N, Crossa J: Genomic-enabled prediction with classification algorithms. Heredity 2014, 112(6):616-626.
  • [12]Gianola D: Theory and analysis of threshold characters. J Anim Sci 1982, 54(5):1079-1096.
  • [13]Hofheinz N, Borchardt D, Weissleder K, Frisch M: Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet 2012, 125(8):1639-1645.
  • [14]Würschum T, Reif JC, Kraft T, Janssen G, Zhao Y: Genomic selection in sugar beet breeding populations. BMC Genet 2013, 14(1):85.
  • [15]Stevanato P, Trebbi D, Saccomani M: Root traits and yield in sugar beet: identification of aflp markers associated with root elongation rate. Euphytica 2010, 173(3):289-298.
  • [16]Stevanato P, Broccanello C, Biscarini F, Del Corvo M, Sablok G, Panella L, Stella A, Concheri G: High-throughput rad-snp genotyping for characterization of sugar beet genotypes. Plant Mol Biol Rep 2014, 32(3):691-696.
  • [17]Browning SR, Browning BL: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 2007, 81(5):1084-1097.
  • [18]Habier D, Fernando R, Dekkers J: The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177(4):2389-2397.
  • [19]VanRaden P: Efficient methods to compute genomic predictions. J Dairy Sci 2008, 91(11):4414-4423.
  • [20]Hastie T, Tibshirani R, Friedman J: Model assessment and selection. In The Elements of Statistical Learning. Volume 2. New York, NY, USA: Springer New York Inc.; 2009:241-247.
  • [21]Gilmour AR, Gogel B, Cullis B, Thompson R: Asreml User Guide Release 3.0. Hemel Hempstead: VSN International Ltd; 2009.
  • [22]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2008. ISBN 3-900051-07-0. [http://www.R-project.org]
  • [23]Kumar S, Chagné D, Bink MC, Volz RK, Whitworth C, Carlisle C: Genomic selection for fruit quality traits in apple (malus× domestica borkh.). PloS one 2012, 7(5):36674.
  • [24]Charfeddine N, Rodríguez-Ramilo ST, Jiménez-Montero JA, Carabaño MJ, González-Recio O: Non parametric vs. gblup model for genomic evaluation with large reference population in holstein cattle. Interbull Bull 2013, 47:67-76.
  • [25]Wolc A, Stricker C, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, Habier D, Fernando R, Garrick DJ, Lamont SJ, Dekkers JCM: Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genet Sel Evol 2011, 43(5):1-9.
  • [26]Resende MF, Muñoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M: Accuracy of genomic selection methods in a standard data set of loblolly pine (pinus taeda l.). Genetics 2012, 190(4):1503-1510.
  • [27]Pszczola M, Strabel T, Mulder H, Calus M: Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 2012, 95(1):389-400.
  • [28]Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA: The impact of genetic architecture on genome-wide evaluation methods. Genetics 2010, 185(3):1021-1031.
  • [29]Hill W, Robertson A: Linkage disequilibrium in finite populations. Theor Appl Genet 1968, 38(6):226-231.
  • [30]Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H: The genome of the recently domesticated crop plant sugar beet (beta vulgaris). Nature 2013, 505:546-549.
  • [31]Hickey JM, Crossa J, Babu R, de los Campos G: Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Sci 2012, 52(2):654-663.
  • [32]VanRaden PM, O’Connell JR, Wiggans GR, Weigel KA: Genomic evaluations with many more genotypes. Genet Sel Evol 2011, 43:10.
  • [33]Hornik K, Meyer D, Karatzoglou A: Support vector machines in r. J Stat Software 2006, 15(9):1-28.
  • [34]Fawcett T: Roc graphs: Notes and practical considerations for researchers. Mach Learn 2004, 31:1-38.
  • [35]Stevanato P, Saccomani M, Bertaggia M, Bottacin A, Cagnin M, De Biaggi M, Biancardi E: Nutrient uptake traits related to sugarbeet yield. J Sugar Beet Res 2004, 41:89-100.
  • [36]Saccomani M, Stevanato P, Trebbi D, McGrath JM, Biancardi E: Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica 2009, 169(1):19-29.
  • [37]Huang B: Water relations and root activities of buchloe dactyloides and zoysia japonica in response to localized soil drying. Plant Soil 1999, 208(2):179-186.
  文献评价指标  
  下载次数:27次 浏览次数:8次