BMC Microbiology | |
PhaP phasins play a principal role in poly-β-hydroxybutyrate accumulation in free-living Bradyrhizobium japonicum | |
Shinji Takenaka1  Kosei Tanaka1  Takayuki Sotsuka2  Yuki Takemoto2  Ken-ichi Yoshida1  | |
[1] Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan;Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan | |
关键词: PHB; Phasin; Bradyrhizobium japonicum; | |
Others : 1142408 DOI : 10.1186/1471-2180-13-290 |
|
received in 2013-09-01, accepted in 2013-12-09, 发布年份 2013 | |
【 摘 要 】
Background
Bradyrhizobium japonicum USDA110, a soybean symbiont, is capable of accumulating a large amount of poly-β-hydroxybutyrate (PHB) as an intracellular carbon storage polymer during free-living growth. Within the genome of USDA110, there are a number of genes annotated as paralogs of proteins involved in PHB metabolism, including its biosynthesis, degradation, and stabilization of its granules. They include two phbA paralogs encoding 3-ketoacyl-CoA thiolase, two phbB paralogs encoding acetoacetylCoA reductase, five phbC paralogs encoding PHB synthase, two phaZ paralogs encoding PHB depolymerase, at least four phaP phasin paralogs for stabilization of PHB granules, and one phaR encoding a putative transcriptional repressor to control phaP expression.
Results
Quantitative reverse-transcriptase PCR analyses of RNA samples prepared from cells grown using three different media revealed that PHB accumulation was related neither to redundancy nor expression levels of the phbA, phbB, phbC, and phaZ paralogs for PHB-synthesis and degradation. On the other hand, at least three of the phaP paralogs, involved in the growth and stabilization of PHB granules, were induced under PHB accumulating conditions. Moreover, the most prominently induced phasin exhibited the highest affinity to PHB in vitro; it was able to displace PhaR previously bound to PHB.
Conclusions
These results suggest that PHB accumulation in free-living B. japonicum USDA110 may not be achieved by controlling production and degradation of PHB. In contrast, it is achieved by stabilizing granules autonomously produced in an environment of excess carbon sources together with restricted nitrogen sources.
【 授权许可】
2013 Yoshida et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150328051043232.pdf | 948KB | download | |
Figure 6. | 11KB | Image | download |
Figure 5. | 78KB | Image | download |
Figure 4. | 67KB | Image | download |
Figure 3. | 65KB | Image | download |
Figure 2. | 39KB | Image | download |
Figure 1. | 39KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Anderson AJ, Dawes EA: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 1990, 54:450-472.
- [2]Hamieh A, Olama Z, Holail H: Microbial production of polyhydroxybutyrate, a biodegradable plastic using agro-industrial waste products. Glo Adv Res J Microbiol 2013, 2:54-64.
- [3]Zevenhuizen LP: Cellular glycogen, beta-1,2-glucan, poly beta-hydroxybutyic acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie Van Leeuwenhoek 1981, 47:481-497.
- [4]Bergersen FJ, Turner GL: Bacteroids from soybean root nodules: respiration and N2 fixation in flow-chamber reactions with oxyleghaemoglobin. Proc R Soc Lond B 1990, 238:295-320.
- [5]Tavernier P, Portais J, Nava S, Courtois J, Courtois B, Barbotin JN: Exopolysaccharide and poly-(beta)-hydroxybutyrate coproduction in two Rhizobium meliloti strains. Appl Environ Microbiol 1997, 63:21-26.
- [6]Bergersen FJ, Peoples MB, Turner GL: A role for poly-βhydroxybutyrate in bacteroids of soybean nodules. Proc R Soc Lond B 1991, 245:59-64.
- [7]Lodwig EM, Leonard M, Marroqui S, Wheeler TR, Findlay K, Downie JA, Poole PS: Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Mol Plant Microbe Interact 2005, 18:67-74.
- [8]Kretovich VL, Romanov VI, Yushkova LA, Shramko VI, Fedulova NG: Nitrogen fixation and poly-β-hydroxybutyric acid content in bacteroids of Rhizobium lupini and Rhizobium leguminosarum. Plant Soil 1977, 48:291-302.
- [9]Romanov VI, Fedulova NG, Tchermenskaya IE, Shramko VI, Molchanov MI, Kretovich WL: Metabolism of poly-β-hydroxybutyric acid in bacteroids of Rhizobium lupini in connection with nitrogen fixation and photosynthesis. Plant Soil 1980, 56:379-390.
- [10]Cevallos MA, Encarnacion S, Leija A, Mora Y, Mora J: Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J Bacteriol 1996, 178:1646-1654.
- [11]Peralta H, Mora Y, Salazar E, Encarnacion S, Palacios R, Mora J: Engineering the nifH promoter region and abolishing poly-β-hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol 2004, 70:3272-3281.
- [12]Cermola M, Federova E, Tate R, Riccio A, Favre R, Patriarca EJ: Nodule invasion and symbiosome differentiation during Rhizobium etli-Phaseolus vulgaris symbiosis. Mol Plant Microbe Interact 2000, 13:733-741.
- [13]Hahn M, Studer D: Competitiveness of a nif– Bradyrhizobium japonicum mutant against the wild-type strain. FEMS Microbiol Lett 1986, 33:143-148.
- [14]Steinbüchel A, Schlegel HG: Physiology and molecular genetics of poly (β-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 1991, 5:535-542.
- [15]Steinbüchel A, Aerts K, Babel W, Follner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Furst U, Pries A, Valentin HE: Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 1995, 41:94-105.
- [16]Pötter M, Steinbüchel A: Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 2005, 6:552-560.
- [17]Pötter M, Madkour MH, Mayer F, Steinbüchel A: Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 2002, 148:2413-2426.
- [18]York G, Stubbe MJ, Sinskey AJ: The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 2002, 184:59-66.
- [19]Tombolini R, Povolo S, Buson A, Squartini A, Nuti MP: Poly-beta-hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41. Microbiology 1995, 141:2553-2559.
- [20]Trainer MA, Capstick D, Zachertowska A, Lam KN, Clark SR, Charles TC: Identification and characterization of the intracellular poly-3-hydroxybutyrate depolymerase enzyme PhaZ of Sinorhizobium meliloti. BMC Microbiol 2010, 10:92. BioMed Central Full Text
- [21]Wang C, Sheng X, Equi RC, Trainer MA, Charles TC, Sobral BWS: Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021. J Bacteriol 2007, 189:9050-9056.
- [22]Klucas RV, Evans HJ: An electron donor system for nitrogenase-dependent acetylene reduction by extracts of soybean nodules. Plant Physiol 1968, 43:1458-1460.
- [23]Aneja P, Dai M, Lacorre DA, Pillon B, Charles TC: Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti Rm1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiol Lett 2004, 239:277-283.
- [24]Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S: Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 2002, 9:189-197.
- [25]Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, et al.: The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001, 293:668-672.
- [26]Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 1988, 85:2444-2448.
- [27]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, Database Issue 40:D290-D301.
- [28]Neumann L, Spinozzi F, Sinibaldi R, Rustichelli F, Pötter M, Steinbüchel A: Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3-hydroxybutyrate) granules. J Bacteriol 2008, 190:2911-2919.
- [29]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9:671-675.
- [30]Regensburger B, Hennecke H: RNA polymerase from Rhizobium japonicum. Arch Microbiol 1983, 135:103-109.
- [31]Vincent JM: A Manual for the Practical Study of Root-Nodule Bacteria. Oxford, England: Blackwell Science Publications; 1970. [International Biological Programme Handbook No. 15]