期刊论文详细信息
BMC Genomics
Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti
Ary A Hoffmann1  Andrew R Weeks1  Igor Filipović1  Gordana Rašić1 
[1] Pest and Disease Vector Group, Department of Genetics, The University of Melbourne, Victoria 3010, Australia
关键词: Mosquito population genomics;    Genome-wide single nucleotide polymorphisms;    Fastq file demultiplexing;    In silico genome digestion;    Restriction-site associated DNA sequencing;    Aedes aegypti;   
Others  :  1217491
DOI  :  10.1186/1471-2164-15-275
 received in 2013-10-31, accepted in 2014-04-02,  发布年份 2014
PDF
【 摘 要 】

Background

Genetic markers are widely used to understand the biology and population dynamics of disease vectors, but often markers are limited in the resolution they provide. In particular, the delineation of population structure, fine scale movement and patterns of relatedness are often obscured unless numerous markers are available. To address this issue in the major arbovirus vector, the yellow fever mosquito (Aedes aegypti), we used double digest Restriction-site Associated DNA (ddRAD) sequencing for the discovery of genome-wide single nucleotide polymorphisms (SNPs). We aimed to characterize the new SNP set and to test the resolution against previously described microsatellite markers in detecting broad and fine-scale genetic patterns in Ae. aegypti.

Results

We developed bioinformatics tools that support the customization of restriction enzyme-based protocols for SNP discovery. We showed that our approach for RAD library construction achieves unbiased genome representation that reflects true evolutionary processes. In Ae. aegypti samples from three continents we identified more than 18,000 putative SNPs. They were widely distributed across the three Ae. aegypti chromosomes, with 47.9% found in intergenic regions and 17.8% in exons of over 2,300 genes. Pattern of their imputed effects in ORFs and UTRs were consistent with those found in a recent transcriptome study. We demonstrated that individual mosquitoes from Indonesia, Australia, Vietnam and Brazil can be assigned with a very high degree of confidence to their region of origin using a large SNP panel. We also showed that familial relatedness of samples from a 0.4 km2 area could be confidently established with a subset of SNPs.

Conclusions

Using a cost-effective customized RAD sequencing approach supported by our bioinformatics tools, we characterized over 18,000 SNPs in field samples of the dengue fever mosquito Ae. aegypti. The variants were annotated and positioned onto the three Ae. aegypti chromosomes. The new SNP set provided much greater resolution in detecting population structure and estimating fine-scale relatedness than a set of polymorphic microsatellites. RAD-based markers demonstrate great potential to advance our understanding of mosquito population processes, critical for implementing new control measures against this major disease vector.

【 授权许可】

   
2014 Rašić et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706232919625.pdf 759KB PDF download
Figure 5. 66KB Image download
Figure 4. 37KB Image download
Figure 3. 31KB Image download
Figure 2. 27KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI: The global distribution and burden of dengue. Nature 2013, 496(7446):504-507.
  • [2]World Health Organization: Global Strategy for dengue prevention and control, 2012–2020. WHO report 2012 (reference number WHO/HTM/NTD/VEM/2012.5). Geneva, Switzerland. Retrieved from http://www.who.int/denguecontrol/9789241504034/en/ webcite
  • [3]Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL: Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476(7361):454-457.
  • [4]Barton NH, Turelli M: Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. Am Nat 2011, 178(3):E48-E75.
  • [5]Yan G, Chadee DD, Severson DW: Evidence for genetic hitchiling effect associated with insecticide resistance in Aedes aegypti. Genetics 1998, 148:793-800.
  • [6]Keyghobadi N: The genetic implications of habitat fragmentation for animals. Can J Zool 2007, 85(10):1049-1064.
  • [7]Urdaneta-Marquez L, Failloux AB: Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infect Genet Evol 2011, 11(2):253-261.
  • [8]Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James PM, Rosenberg MS, Scribner KT, Spear S: Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 2010, 19(17):3565-3575.
  • [9]Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, Chang MS, Walton C: Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet 2009, 10:11.
  • [10]Chambers EW, Meece JK, McGowan JA, Lovin DD, Hemme RR, Chadee DD, McAbee K, Brown SE, Knudson DL, Severson DW: Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti. J Hered 2007, 98(3):202-210.
  • [11]Slotman MA, Kelly NB, Harrington LC, Kitthawee S, Jones JW, Scott TW, Caccone A, Powell JR: Polymorphic microsatellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever. Mol Ecol Notes 2007, 7(1):168-171.
  • [12]Lovin DD, Washington KO, deBruyn B, Hemme RR, Mori A, Epstein SR, Harker BW, Streit TG, Severson DW: Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti. BMC Genomics 2009, 10:590. BioMed Central Full Text
  • [13]Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel AJ, Black WC, Gorrochotegui-Escalante N, Urdaneta-Marquez L, Sylla M, Slotman M, Murray KO, Walker C, Powell JR: Worldwide patterns of genetic differentiation imply multiple 'domestications' of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 2011, 278(1717):2446-2454.
  • [14]Hemme RR, Thomas CL, Chadee DD, Severson DW: Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PloS Neglect Trop D 2010, 4(3):e634.
  • [15]Endersby NM, Hoffmann AA, White VL, Lowenstein S, Ritchie S, Johnson PH, Rapley LP, Ryan PA, Nam VS, Yen NT, Kittiyapong P, Weeks AR: Genetic structure of Aedes aegypti in Australia and Vietnam revealed by microsatellite and exon primed intron crossing markers suggests feasibility of local control options. J Med Entomol 2009, 46(5):1074-1083.
  • [16]Olanratmanee P, Kittayapong P, Chansang C, Hoffmann AA, Weeks AR, Endersby NM: Population genetic structure of Aedes (Stegomyia) aegypti (L.) at a micro-spatial scale in Thailand: implications for a dengue suppression strategy. PLoS Neglect Trop D 2013, 7(1):e1913.
  • [17]Endersby NM, Hoffmann AA, White VL, Ritchie SA, Johnson PH, Weeks AR: Changes in the genetic structure of Aedes aegypti (Diptera: Culicidae) populations in Queensland, Australia, across two seasons: implications for potential mosquito releases. J Med Entomol 2011, 48(5):999-1007.
  • [18]Reiter P, Amador MA, Anderson AR, Clark GG: Short Report: Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 1995, 52(2):177-179.
  • [19]Goncalves da Silva A, Cunha IC, Santos WS, Luz SL, Ribolla PE, Abad-Franch F: Gene flow networks among American Aedes aegypti populations. Evol Appl 2012, 5(7):664-676.
  • [20]Rašić G, Endersby NM, Williams C, Hoffmann AA: Using Wolbachia-based release for suppression of Aedes mosquitoes: insights from genetic data and population simulations. Ecol Appl 2014. http://dx.doi.org/10.1890/13-1305.1 webcite
  • [21]Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T, Slate JON: On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Mol Ecol 2010, 19(7):1439-1451.
  • [22]Cariou M, Duret L, Charlat S: Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization. Ecol Evol 2013, 3(4):846-852.
  • [23]Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi ZY, Megy K, Grabherr M, Ren QH, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu JS, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, et al.: Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007, 316(5832):1718-1723.
  • [24]Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA: Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 2008, 3(10):e3376.
  • [25]Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA: Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 2007, 17(2):240-248.
  • [26]Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML: Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011, 12(7):499-510.
  • [27]Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA: SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol 2011, 772:157-178.
  • [28]Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE: Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 2012, 7(5):e37135.
  • [29]Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR: Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 2014, 68(2):514-525.
  • [30]Juneja P, Osei-Poku J, Ho YS, Ariani CV, Palmer WJ, Pain A, Jiggins FM: Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission. PLoS Neglect Trop D 2014, 8(1):e2652.
  • [31]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011, 6(5):e19379.
  • [32]Poland JA, Brown PJ, Sorrells ME, Jannink JL: Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 2012, 7(2):e32253.
  • [33]Wang JW, Xia YD, Li LL, Gong DS, Yao Y, Luo HJ, Lu HL, Yi N, Wu HL, Zhang XQ, Tao Q, Gao F: Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics 2013, 14:11. BioMed Central Full Text
  • [34]Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews KR: ezRAD: a simplified method for genomic genotyping in non-model organisms. Peer J 2013, 1:e203.
  • [35]Stolle E, Moritz RF: RESTseq–efficient benchtop population genomics with RESTriction Fragment SEQuencing. PLoS One 2013, 8(5):e63960.
  • [36]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [37]Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA: Stacks: an analysis tool set for population genomics. Mol Ecol 2013, 22(11):3124-3140.
  • [38]Minoche AE, Dohm JC, Himmelbauer H: Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 2011, 12(11):R112. BioMed Central Full Text
  • [39]Pujolar JM, Jacobsen MW, Frydenberg J, Als TD, Larsen PF, Maes GE, Zane L, Jian JB, Cheng L, Hansen MM: A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Mol Ecol Resour 2013, 13(4):706-714.
  • [40]Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino GL: Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 2011, 12:304. BioMed Central Full Text
  • [41]Van Bers NEM, Van Oers K, Kerstens HHD, Dibbits BW, Crooijmans RPMA, Visser ME, Groenen MAM: Genome-wide SNP detection in the great tit Parus major using high throughput sequencing. Mol Ecol 2010, 19:89-99.
  • [42]Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6(2):80-92.
  • [43]Bonizzoni M, Britton M, Marinotti O, Dunn WA, Fass J, James AA: Probing functional polymorphisms in the dengue vector, Aedes aegypti. BMC Genomics 2013, 14:739. BioMed Central Full Text
  • [44]Morlais I, Severson DW: Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti. Insect Mol Biol 2003, 12(6):631-639.
  • [45]Morin PA, Luikart G, Wayne RK, Grp SW: SNPs in ecology, evolution and conservation. Trends Ecol Evol 2004, 19(4):208-216.
  • [46]Jeffery JAL, Yen NT, Nam VS, Nghia LT, Hoffmann AA, Kay BH, Ryan PA: Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue. PLoS Neglect Trop D 2009, 3(11):e552.
  • [47]Ritchie SA, Montgomery BL, Hoffmann AA: Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases. J Med Entomol 2013, 50(3):624-631.
  • [48]Jombart T, Devillard S, Balloux F: Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010, 11:94.
  • [49]Jakobsson M, Edge MD, Rosenberg NA: The relationship between F(ST) and the frequency of the most frequent allele. Genetics 2013, 193(2):515-528.
  • [50]Tokarska M, Marshall T, Kowalczyk R, Wojcik JM, Pertoldi C, Kristensen TN, Loeschcke V, Gregersen VR, Bendixen C: Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity 2009, 103(4):326-332.
  • [51]Hauser L, Baird M, Hilborn R, Seeb LW, Seeb JE: An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Mol Ecol Resour 2011, 11(Suppl 1):150-161.
  • [52]Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP: Putting the “landscape” in landscape genetics. Heredity 2007, 98(3):128-142.
  • [53]VectorBase: VectorBase. Adv Physiol Educhttps://www.vectorbase.org/organisms/aedes-aegypti/liverpool/aaegl1 webcite
  • [54]Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PloS Genet 2010, 6(2):e1000862.
  • [55]Tajima F: Evolutionary relationship of DNA sequences in finite populations. Genetics 1983, 105:437-460.
  • [56]Brumfield RT, Beerli P, Nickerson DA, Edwards SV: The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 2003, 18(5):249-256.
  • [57]Brownstein MJ, Carpten JD, Smith JR: Modulation of non-templated nucleotide addition by tag DNA polymerase: Primer modifications that facilitate genotyping. Biotechniques 1996, 20(6):1004-1006. 1008–1010
  • [58]Blacket MJ, Robin C, Good RT, Lee SF, Miller AD: Universal primers for fluorescent labelling of PCR fragments - an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 2012, 12(3):456-463.
  • [59]Jombart T, Ahmed I: adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27(21):3070-3071.
  • [60]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38(6):1358-1370.
  • [61]Raymond M, Rousset F: GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 1995, 86(3):248-249.
  • [62]Loiselle BA, Sork VL, Nason J, Graham C: Spatial genetic-structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 1995, 82(11):1420-1425.
  • [63]Hardy OJ, Vekemans X: Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2002, 2(4):618-620.
  • [64]Iacchei M, Ben-Horin T, Selkoe KA, Bird CE, Garcia-Rodriguez FJ, Toonen RJ: Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Mol Ecol 2013, 22(13):3476-3494.
  • [65]Kalinowski ST, Wagner AP, Taper ML: ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 2006, 6(2):576-579.
  文献评价指标  
  下载次数:42次 浏览次数:9次