期刊论文详细信息
BMC Systems Biology
A system based network approach to ethanol tolerance in Saccharomyces cerevisiae
Betul Kirdar2  Ebru Toksoy Oner1  Kazim Yalcin Arga1  Serpil Eraslan2  Ceyda Kasavi2 
[1] Department of Bioengineering, Marmara University, Istanbul, Turkey;Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey
关键词: Protein-protein interaction network;    Saccharomyces cerevisiae;    Candidate genes;    Ethanol tolerance network;   
Others  :  1159580
DOI  :  10.1186/s12918-014-0090-6
 received in 2014-04-10, accepted in 2014-07-15,  发布年份 2014
PDF
【 摘 要 】

Background

Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance.

Results

In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance. Protein-protein interaction (PPI) network associated with ethanol tolerance (tETN) was reconstructed by integrating PPI data with Gene Ontology (GO) terms. Modular analysis of the constructed networks revealed genes with no previously reported experimental evidence related to ethanol tolerance and resulted in the identification of 17 genes with previously unknown biological functions. We have randomly selected four of these genes and deletion strains of two genes (YDR307W and YHL042W) were found to exhibit improved tolerance to ethanol when compared to wild type strain.

The genome-wide transcriptomic response of yeast cells to the deletions of YDR307W and YHL042W in the absence of ethanol revealed that the deletion of YDR307W and YHL042W genes resulted in the transcriptional re-programming of the metabolism resulting from a mis-perception of the nutritional environment. Yeast cells perceived an excess amount of glucose and a deficiency of methionine or sulfur in the absence of YDR307W and YHL042W, respectively, possibly resulting from a defect in the nutritional sensing and signaling or transport mechanisms. Mutations leading to an increase in ribosome biogenesis were found to be important for the improvement of ethanol tolerance. Modulations of chronological life span were also identified to contribute to ethanol tolerance in yeast.

Conclusions

The system based network approach developed allows the identification of novel gene targets for improved ethanol tolerance and supports the highly complex nature of ethanol tolerance in yeast.

【 授权许可】

   
2014 Kasavi et al.; licensee BioMed Central

【 预 览 】
附件列表
Files Size Format View
20150409021640924.pdf 1148KB PDF download
Figure 5. 17KB Image download
Figure 4. 69KB Image download
Figure 3. 18KB Image download
Figure 2. 21KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Yazawa H, Iwahashi H, Uemura H: Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity ofSaccharomyces cerevisiae.Yeast 2007, 24:551–560.
  • [2]Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA: The ethanol stress response and ethanol tolerance ofSaccharomyces cerevisiae.J Appl Microbiol 2010, 109:13–24.
  • [3]Ma M, Liu ZL: Mechanisms of Ethanol Tolerance inSaccharomyces cerevisiae.Appl Microbiol Biotechnol 2010, 87:829–845.
  • [4]Bai FW, Anderson WA, Moo-Young M: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 2008, 26:89-105.
  • [5]Alexandre H, Charpentier C: Biochemical aspects of stuck and sluggish fermentation in grape must. J Ind Microbiol Biotechnol 1998, 20:20-27.
  • [6]Bai FW, Chen LJ, Zhang Z, Anderson W, Moo-Young M: Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol 2004, 110:287-293.
  • [7]Fischer CR, Klein-Marcuschamer D, Stephanopoulos G: Selection and optimization of microbial hosts for Biofuels production. Metab Eng 2008, 10:295-304.
  • [8]Kasavi C, Finore I, Lama L, Nicolaus B, Oliver SG, Toksoy Oner E, Kirdar B: Evaluation of IndustrialSaccharomyces cerevisiaestrains for ethanol production from biomass.Biomass Bioenergy 2012, 45:230–238.
  • [9]Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S: Identification of target genes conferring ethanol stress tolerance toSaccharomyces cerevisiaebased on DNA microarray data analysis.J Biotechnol 2007, 131:34–44.
  • [10]Ling H, Teo W, Chen B, Leong SSJ, Chang MW: Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol 2014, 29C:99-106.
  • [11]Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H: Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress inSaccharomyces cerevisiae.FEMS Yeast Res 2009, 9:32–44.
  • [12]Berry DB, Gasch AP: Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 2008, 19(November):4580-4587.
  • [13]Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D: Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 2004, 68:968-972.
  • [14]Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H: The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 2006, 6:744-750.
  • [15]Van Voorst F, Houghton-Larsen J, Jønson L, Kielland-Brandt MC, Brandt A: Genome-wide identification of genes required for growth ofSaccharomyces cerevisiaeunder ethanol stress.Yeast 2006, 23:351–359.
  • [16]Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G: Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314(80):1565-1568.
  • [17]Li H, Ma M-L, Luo S, Zhang R-M, Han P, Hu W: Metabolic responses to ethanol inSaccharomyces cerevisiaeusing a gas chromatography tandem mass spectrometry-based metabolomics approach.Int J Biochem Cell Biol 2012, 44:1087–1096.
  • [18]Vidal M, Cusick ME, Barabási AL: Interactome networks and human disease. Cell 2011, 144:986-998.
  • [19]Barabási AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12:56-68.
  • [20]Jiang X, Liu B, Jiang J, Zhao H, Fan M, Zhang J, Fan Z, Jiang T: Modularity in the genetic disease-phenotype network. FEBS Lett 2008, 582:2549-2554.
  • [21]Rende D, Baysal N, Kirdar B: A novel integrative network approach to understand the interplay between cardiovascular disease and other complex disorders. Mol Biosyst 2011, 7:2205-2219.
  • [22]Chen J, Yuan B: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 2006, 22:2283-2290.
  • [23]Karimpour-Fard A, Leach SM, Hunter LE, Gill RT: The topology of the bacterial co-conserved protein network and its implications for predicting protein function. BMC Genomics 2008, 9:313.
  • [24]Tsankov AM, Brown CR, Yu MC, Win MZ, Silver P, Casolari JM: Communication between levels of transcriptional control improves robustness and adaptivity. Mol Syst Biol 2006, 2:1-10.
  • [25]Vermeirssen V, Barrasa MI, Hidalgo C, Babon JAB, Sequerra R, Doucette-Stamm L, Barabási AL, Walhout AJM: Transcription factor modularity in a gene-centeredC. eleganscore neuronal protein-DNA interaction network.Genome Res 2007, 17:1061–1071.
  • [26]Simonis N, Gonze D, Orsi C, Van Helden J, Wodak SJ: Modularity of the transcriptional response of protein complexes in yeast. J Mol Biol 2006, 363:589-610.
  • [27]Wang Z, Zhang J: In search of the biological significance of modular structures in protein networks. PLoS Comput Biol 2007, 3:e107.
  • [28]Yoon J, Blumer A, Lee K: An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics 2006, 22:3106-3108.
  • [29]Tanay A, Sharan R, Kupiec M, Shamir R: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci U S A 2004, 101:2981-2986.
  • [30]Zhang S, Wang RS, Zhang XS: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys A Stat Mech its Appl 2007, 374:483-490.
  • [31]Bader GD, Hogue CWV: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2.
  • [32]Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M: Cell growth and cell cycle inSaccharomyces cerevisiae: basic regulatory design and protein-protein interaction network.Biotechnol Adv 2012, 30:52–72.
  • [33]Arga YK, Önsan Zİ, Kırdar B, Ülgen KÖ, Nielsen J: Understanding signaling in yeast: insights from network analysis. Biotechnol Bioeng 2007, 97:1246-1258.
  • [34]Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34(Database issue):D535-D539.
  • [35]Lewis J, Elkon IM, McGee M, Higbee AJ, Gasch AP: Exploiting natural variation inSaccharomyces cerevisiaeto identify genes for increased ethanol resistance.Genetics 2010, 186:1197–1205.
  • [36]Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM, Kweon DH, Park JC, Jin YS: Identification of gene targets eliciting improved alcohol tolerance inSaccharomyces cerevisiaethrough inverse metabolic engineering.J Biotechnol 2010, 149:52–59.
  • [37]Kim HS, Kim NR, Choi W: Total fatty acid content of the plasma membrane ofSaccharomyces cerevisiaeis more responsible for ethanol tolerance than the degree of unsaturation.Biotechnol Lett 2011, 33:509–515.
  • [38]Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, Del Olmo M: Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. Int J Food Microbiol 2009, 130:122-130.
  • [39]Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M: Computing topological parameters of biological networks. Bioinformatics 2008, 24:282-284.
  • [40]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
  • [41]Maere S, Heymans K, Kuiper M: BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21:3448-3449.
  • [42]Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived fromSaccharomyces cerevisiaeS288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications.Yeast 1998, 14:115–132.
  • [43]Brajtburg J, Elberg S, Medoff G, Kobayashi GS: Increase in colony-forming units ofCandida albicansafter treatment with polyene antibiotics.Antimicrob Agents Chemother 1981, 19:199–200.
  • [44]Bolstad BM, Irizarry R, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [45]Gautier L, Cope L, Bolstad BM, Irizarry R: Affy-analysis of affymetrix genechip data at the probe level. Bioinformatics 2004, 20:307-315.
  • [46]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80.
  • [47]Smyth GK: Linear models and empirical Bayes methods for assessing diferential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article 3.
  • [48]Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S: AmiGO: online access to ontology and annotation data. Bioinformatics 2009, 25:288-289.
  • [49]Oliveira AP, Patil KR, Nielsen J: Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst Biol 2008, 2:1-16.
  • [50]Patil KR, Nielsen J: Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 2005, 102:2685-2689.
  • [51]Cvijovic M, Olivares-Hernández R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J: BioMet toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 2010, 38(Web Server issue):W144-W149.
  • [52]Teixeira MC, Monteiro PT, Guerreiro JF, Gonçalves JP, Mira NP, Dos Santos SC, Cabrito TR, Palma M, Costa C, Francisco AP, Madeira SC, Oliveira AL, Freitas AT, Sá-Correia I: The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation inSaccharomyces cerevisiae.Nucleic Acids Res 2014, 42:D161–166.
  • [53]Cankorur-Cetinkaya A, Eraslan S, Kirdar B: Transcriptional remodelling in response to changing copper levels in the Wilson and Menkes disease model ofSaccharomyces cerevisiae.Mol Biosyst 2013, 9:2889–2908.
  • [54]Mrowka R, Patzak A, Herzel H: Is there a bias in proteome research? Genome Res 2001, 11:1971-1973.
  • [55]Von Mering C, Krause R, Snel B, Cornell M, Oliver S, Fields S, Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417:399-403.
  • [56]Karagoz K, Arga KY: Assessment of high-confidence protein-protein interactome in yeast. Comput Biol Chem 2013, 45:1-8.
  • [57]Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R: Eigenvector centrality mapping for analyzing connectivity patterns in fmri data of the human brain. PLoS One 2010, 5:e10232.
  • [58]Wang J, Chen G, Li M, Pan Y: Integration of breast cancer gene signatures based on graph centrality. BMC Syst Biol 2011, 5(Suppl 3):S10.
  • [59]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297(80):1551-1555.
  • [60]Ravasz E, Barabási AL: Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 2003, 67(2 Pt 2):1-7.
  • [61]Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG: Using graph theory to analyze biological networks. Bio Data Min 2011, 4:10.
  • [62]Gentzsch M, Tanner W: The PMT gene family: protein O-Glycosylation inSaccharomyces cerevisiaeis vital.EMBO J 1996, 15:5752–5759.
  • [63]Despons L, Wirth B, Louis VL, Potier S, Souciet JL: An evolutionary scenario for one of the largest yeast gene families. Trends Genet 2006, 22:10-15.
  • [64]Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel D, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, et al: Functional profiling of theSaccharomyces cerevisiaegenome.Nature 2002, 418:387–391.
  • [65]Popolo L, Vai M: The gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1999, 1426:385-400.
  • [66]Hamada K, Terashima H, Arisawa M, Yabuki N, Kitada K: Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 1999, 181:3886-3889.
  • [67]Mouyna I, Monod M, Fontaine T, Henrissat B, Léchenne B, Latgé JP: Identification of the catalytic residues of the first family of β(1–3)glucanosyltransferases identified in fungi. Biochem J 2000, 347(Pt 3):741-747.
  • [68]Rolli E, Ragni E, Rodriguez-Pena JM, Arroyo J, Popolo L: GAS3, a developmentally regulated gene, encodes a highly mannosylated and inactive protein of the gas family ofSaccharomyces cerevisiae.Yeast 2010, 27:597–610.
  • [69]Kim H, Melén K, Von Heijne G: Topology models for 37Saccharomyces cerevisiaemembrane proteins based on C-terminal reporter fusions and predictions.J Biol Chem 2003, 278:10208–10213.
  • [70]Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW: A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein Kinase, Slt2p (Mpk1p). Eukaryot Cell 2005, 4:849-860.
  • [71]Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X: A novel strategy to construct yeastSaccharomyces cerevisiaestrains for very high gravity fermentation.PLoS One 2012, 7:e31235.
  • [72]Thammasittirong SN-R, Thirasaktana T, Thammasittirong A, Srisodsuk M: Improvement of ethanol production by ethanol-tolerantSaccharomyces cerevisiaeUVNR56.Springerplus 2013, 2:583.
  • [73]Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I: Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb Cell Fact 2012, 11:1-9.
  • [74]Anderson MJ, Barker SL, Boone C, Measday V: Identification of RCN1 and RSA3 as ethanol-tolerant genes inSaccharomyces cerevisiaeusing a high copy barcoded library.FEMS Yeast Res 2012, 12:48–60.
  • [75]Dinh TN, NaDgahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H: Analysis of adaptation to high ethanol concentration inSaccharomyces cerevisiaeusing DNA microarray.Bioprocess Biosys Eng 2009, 32:681–688.
  • [76]Li BZ, Cheng JS, Ding MZ, Yuan YJ: Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol 2010, 148:194-203.
  • [77]Michaelis S, Herskowitz I: The a-factor pheromone ofSaccharomyces cerevisiaeis essential for mating.Mol Cell Biol 1988, 8:1309–1318.
  • [78]Managbanag JR, Witten TM, Bonchev D, Fox L, Tsuchiya M, Kennedy BK, Kaeberlein M: Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS One 2008, 3:e3802.
  • [79]McIsaac RS, Petti A, Bussemaker HJ, Botstein D: Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway. Mol Biol Cell 2012, 23:2993-3007.
  • [80]Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry J, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW: Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 2012, 14:966-976.
  文献评价指标  
  下载次数:0次 浏览次数:2次