期刊论文详细信息
BMC Evolutionary Biology
Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium)
Quentin Cronk1  Saemundur Sveinsson1 
[1] Department of Botany and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver V6T 1Z4, BC, Canada
关键词: Fabaceae;    Repetitive DNA;    Plastid genome evolution;    Plastome evolution;    Clover;    Trifolium;   
Others  :  1117846
DOI  :  10.1186/s12862-014-0228-6
 received in 2014-05-09, accepted in 2014-10-27,  发布年份 2014
PDF
【 摘 要 】

Background

Some clover species, particularly Trifolium subterraneum, have previously been reported to have highly unusual plastomes, relative to closely related legumes, enlarged with many duplications, gene losses and the presence of DNA unique to Trifolium, which may represent horizontal transfer. In order to pinpoint the evolutionary origin of this phenomenon within the genus Trifolium, we sequenced and assembled the plastomes of eight additional Trifolium species widely sampled from across the genus.

Results

The Trifolium plastomes fell into two groups: those of Trifolium boissieri, T. strictum and T. glanduliferum (representing subgenus Chronosemium and subg. Trifolium section Paramesus) were tractable, assembled readily and were not unusual in the general context of Fabeae plastomes. The other Trifolium species (“core Trifolium”) proved refractory to assembly mainly because of numerous short duplications. These species form a single clade, which we call the “refractory clade” (comprising subg, Trifolium sections Lupinaster, Trifolium, Trichocephalum, Vesicastrum and Trifoliastrum). The characteristics of the refractory clade are the presence of numerous short duplications and 7-15% longer genomes than the tractable species. Molecular dating estimates that the origin of the most recent common ancestor (MRCA) of the refractory clade is approximately 13.1 million years ago (MYA). This is considerably younger than the estimated MRCA ages of Trifolium (c. 18.6 MYA) and Trifolium subg. Trifolium (16.1 MYA).

Conclusions

We conclude that the unusual repetitive plastome type previously characterized in Trifolium subterraneum had a single origin within Trifolium and is characteristic of most (but not all) species of subgenus Trifolium. It appears that an ancestral plastome within Trifolium underwent an evolutionary change resulting in plastomes that either actively promoted, were permissive to, or were unable to control, duplications within the genome. The precise mechanism of this important change in the mode and tempo of plastome evolution deserves further investigation.

【 授权许可】

   
2014 Sveinsson and Cronk; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206010808711.pdf 594KB PDF download
Figure 2. 30KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE: Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 2006, 6:17. BioMed Central Full Text
  • [2]Wicke S, Schneeweiss GM, de Pamphilis CW, Müller KF, Quandt D: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 2011, 76:273-297.
  • [3]Guisinger MM, Kuehl J, Boore JL, Jansen RK: Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 2011, 28:583-600.
  • [4]Haberle RC, Fourcade HM, Boore JL, Jansen RK: Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 2008, 66:350-361.
  • [5]Ištvánek J, Jaroš M, Křenek A, Řepková J: Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am J Bot 2014, 101:327-337.
  • [6]Yates SA, Swain MT, Hegarty MJ, Chernukin I, Lowe M, Allison GG, Ruttink T, Abberton MT, Jenkins G, Skøt L: De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics 2014, 15:453. BioMed Central Full Text
  • [7]Cai Z, Guisinger M, Kim H-G, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK: Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 2008, 67:696-704.
  • [8]Wojciechowski MF, Sanderson MJ, Steele KP, Liston A: Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. In Advances in Legume Systematics, Part 9. Edited by Herendeen PS, Bruneau A. Royal Botanic Gardens, Kew, UK; 2000:277-298.
  • [9]Magee AM, Aspinall S, Rice DW, Cusack BP, Sémon M, Perry AS, Stefanović S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH: Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 2010, 20:1700-1710.
  • [10]Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, Jansen R, Ruhlman T: Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes.Plant Biotechnol J 2014, doi:10.1111/pbi.12179.
  • [11]Wyman SK, Jansen RK, Boore JL: Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20:3252-3255.
  • [12]Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL: Molecular phylogenetics of the clover genus (Trifolium - Leguminosae). Mol Phylogenet Evol 2006, 39:688-705.
  • [13]Cosner ME, Jansen RK, Palmer JD, Downie SR: The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 1997, 31:419-429.
  • [14]Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK: The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 2006, 23:2175-2190.
  • [15]Lilly JW, Havey MJ, Jackson SA, Jiang J: Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 2001, 13:245-254.
  • [16]Maréchal A, Parent J-S, Véronneau-Lafortune F, Joyeux A, Lang BF, Brisson N: Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci U S A 2009, 106:14693-14698.
  • [17]Maréchal A, Brisson N: Recombination and the maintenance of plant organelle genome stability. New Phytol 2010, 186:299-317.
  • [18]Cerutti H, Osman M, Grandoni P, Jagendorf AT: A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci U S A 1992, 89:8068-8072.
  • [19]Cerutti H, Jagendorf AT: DNA strand-transfer activity in pea (Pisum sativum L.) chloroplasts. Plant Physiol 1993, 102:145-153.
  • [20]Kode V, Mudd EA, Iamtham S, Day A: The tobacco plastid accD gene is essential and is required for leaf development. Plant J 2005, 44:237-244.
  • [21]Gurdon C, Maliga P: Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula. DNA Res 2014, 21:1-11.
  • [22]Rousseau-Gueutin M, Huang X, Higginson E, Ayliffe M, Day A, Timmis JN: Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. Plant Physiol 2013, 161:1918-1929.
  • [23]Maul JE, Lilly JW, Cui L, de Pamphilis CW, Miller W, Harris EH, Stern DB: The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 2002, 14:2659-2679.
  • [24]Mackenzie S, McIntosh L: Higher plant mitochondria. Plant Cell 1999, 11:571-585.
  • [25]Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987, 19:11-15.
  • [26]Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B: RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 2012, 40:W622-W627.
  • [27]Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol 2000, 7:203-214.
  • [28]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [29]Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD, Marshall D: Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 2013, 14:193-202.
  • [30]Conant GC, Wolfe KH: GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 2008, 24:861-862.
  • [31][http://www.R-project.org/] webcite R Core Team. R: A language and environment for statistical computing. In Vienna, Austria: R Foundation for Statistical Computing; 2014. .
  • [32]Darling AE, Mau B, Perna NT: Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5(6):e11147.
  • [33]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30:772-780.
  • [34]Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.
  • [35]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [36]Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012, 9:772.
  • [37]Felsenstein J: Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 1973, 22:240-249.
  • [38]Zwickl DJ: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion, Dissertation. University of Texas, Austin, TX; 2006.
  • [39]Sukumaran J, Holder MT: DendroPy: a python library for phylogenetic computing. Bioinformatics 2010, 26:1569-1571.
  • [40]Lavin M, Herendeen PS, Wojciechowski MF: Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 2005, 54:575-594.
  • [41]Sanderson MJ: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 2002, 19:101-109.
  • [42]Sanderson MJ: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003, 19:301-302.
  • [43]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts; 2003.
  • [44]Sveinsson S, Cronk Q: Data from: evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). In Dryad Digital Repository. doi:10.5061/dryad.km38g.
  文献评价指标  
  下载次数:29次 浏览次数:19次