期刊论文详细信息
BMC Evolutionary Biology
Molecular evolution and phylogenetics of rodent malaria parasites
Darren J Obbard1  Sarah E Reece1  Ricardo S Ramiro2 
[1] Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom;Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
关键词: Molecular evolution;    Divergence time;    Species delimitation;    Phylogeny;    Plasmodium;    Rodent malaria;   
Others  :  1140037
DOI  :  10.1186/1471-2148-12-219
 received in 2012-07-19, accepted in 2012-10-31,  发布年份 2012
PDF
【 摘 要 】

Background

Over the last 6 decades, rodent Plasmodium species have become key model systems for understanding the basic biology of malaria parasites. Cell and molecular parasitology have made much progress in identifying genes underpinning interactions between malaria parasites, hosts, and vectors. However, little attention has been paid to the evolutionary genetics of parasites, which provides context for identifying potential therapeutic targets and for understanding the selective forces shaping parasites in natural populations. Additionally, understanding the relationships between species, subspecies, and strains, is necessary to maximize the utility of rodent malaria parasites as medically important infectious disease models, and for investigating the evolution of host-parasite interactions.

Results

Here, we collected multi-locus sequence data from 58 rodent malaria genotypes distributed throughout 13 subspecies belonging to P. berghei, P. chabaudi, P. vinckei, and P. yoelii. We employ multi-locus methods to infer the subspecies phylogeny, and use population-genetic approaches to elucidate the selective patterns shaping the evolution of these organisms. Our results reveal a time-line for the evolution of rodent Plasmodium and suggest that all the subspecies are independently evolving lineages (i.e. species). We show that estimates of species-level polymorphism are inflated if subspecies are not explicitly recognized, and detect purifying selection at most loci.

Conclusions

Our work resolves previous inconsistencies in the phylogeny of rodent malaria parasites, provides estimates of important parameters that relate to the parasite’s natural history and provides a much-needed evolutionary context for understanding diverse biological aspects from the cross-reactivity of immune responses to parasite mating patterns.

【 授权许可】

   
2012 Ramiro et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324064630971.pdf 595KB PDF download
Figure 2. 43KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Killick-Kendrick R, Peters W: Rodent Malaria. London: Academic Press; 1978.
  • [2]Stephens R, Culleton RL, Lamb TJ: The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 2012, 28(2):73-82.
  • [3]Carlton J, Hayton K, Cravo P, Walliker D: Of mice and malaria mutants: unravelling the genetics of drug resistance using rodent malaria models. Trends Parasitol 2001, 17(5):236-242.
  • [4]Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, Turner G, Langhorne J, Model HRMA: The role of animal models for research on severe malaria. Plos Pathog 2012, 8(2):e1002401.
  • [5]Guttery DS, Holder AA, Tewari R: Sexual development in plasmodium: lessons from functional analyses. Plos Pathog 2012, 8(1):e1002404.
  • [6]Khan S, Frankefayard B, Mair G, Lasonder E, Janse C, Mann M, Waters A: Proteome analysis of separated male and female gametocytes reveals novel sex-specific biology. Cell 2005, 121(5):675-687.
  • [7]Conway DJ: Molecular epidemiology of malaria. Clin Microbiol Rev 2007, 20(1):188-204.
  • [8]Wilson DE, Reeder DM: Mammal Species of the World. A Taxonomic and Geographic Reference. 3rd edition. Baltimore: Johns Hopkins University Press; 2005.
  • [9]Whelan NV: Species tree inference in the age of genomics. Trends Evol Biol 2011, 3(1):23-28.
  • [10]McDonald JH, Kreitman M: Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991, 351(6328):652-654.
  • [11]Heled J, Drummond A: Bayesian inference of species trees from multilocus data. Mol Biol Evol 2010, 27(3):570.
  • [12]Niemiller ML, Near TJ, Fitzpatrick BM: Delimiting species using multilocus data: diagnosing cryptic diversity in the southern cavefish, typhlichthys subterraneus (teleostei: amblyopsidae). Evolution 2012, 66(3):846-866.
  • [13]Hayakawa T, Culleton R, Otani H, Horii T, Tanabe K: Big bang in the evolution of extant malaria parasites. Mol Biol Evol 2008, 25(10):2233-2239.
  • [14]Perkins SL, Sarkar IN, Carter R: The phylogeny of rodent malaria parasites: Simultaneous analysis across three genomes. Infect Genet Evol 2007, 7(1):74-83.
  • [15]Yang Z, Rannala B: Bayesian species delimitation using multilocus sequence data. P Natl Acad Sci USA 2010, 107(20):9264-9269.
  • [16]Cummings MP, Neel MC, Shaw KL: A genealogical approach to quantifying lineage divergence. Evolution 2008, 62(9):2411-2422.
  • [17]Zhang C, Zhang D-X, Zhu T, Yang Z: Evaluation of a bayesian coalescent method of species delimitation. Syst Biol 2011, 60(6):747-761.
  • [18]Leache AD, Fujita MK: Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). P Roy Soc B - Biol Sci 2010, 278(1705):490-492.
  • [19]Escalante AA, Ayala FJ: Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. P Natl Acad Sci USA 1994, 91(24):11373-11377.
  • [20]Ricklefs RE, Outlaw DC: A molecular clock for malaria parasites. Science 2010, 329(5988):226-229.
  • [21]Pacheco MA, Battistuzzi FU, Junge RE, Cornejo OE, Williams CV, Landau I, Rabetafika L, Snounou G, Jones-Engel L, Escalante AA: Timing the origin of human malarias: the lemur puzzle. BMC Evol Biol 2011, 11(1):299.
  • [22]Poux C, Madsen O, Marquard E, Vieites DR, de Jong WW, Vences M: Asynchronous Colonization of Madagascar by the Four Endemic Clades of Primates, Tenrecs, Carnivores, and Rodents as Inferred from Nuclear Genes. Systematic Biology 2005, 54(5):719-730.
  • [23]Ali JR, Huber M: Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 2010, 463(7281):653-U680.
  • [24]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [25]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123(3):585-595.
  • [26]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3(5):418-426.
  • [27]Yang ZZ: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [28]Saula AA, Prescott NN, Smitha F, Cheng Q, Walliker DD: Evidence of cross-contamination among laboratory lines of Plasmodium berghei. Mol Biochem Parasitol 1997, 84(1):143-147.
  • [29]Welch JJ: Estimating the genomewide rate of adaptive protein evolution in drosophila. Genetics 2006, 173(2):821-837.
  • [30]Lymbery AJ, Thompson RCA: The molecular epidemiology of parasite infections: Tools and applications. Molecular and Biochemical Parasitology 2012, 181(2):102-116.
  • [31]Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P: Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol Biol 2008, 8:199.
  • [32]Janse CJ, Franke-Fayard B, Mair GR, Ramesar J, Thiel C, Engelmann S, Matuschewski K, van Gemert GJ, Sauerwein RW, Waters AP: High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 2006, 145(1):60-70.
  • [33]Li J, Pattaradilokrat S, Zhu F, Jiang H, Liu S, Hong L, Fu Y, Koo L, Xu W, Pan W, et al.: Linkage maps from multiple genetic crosses and loci linked to growth-related virulent phenotype in Plasmodium yoelii. P Natl Acad Sci USA 2011, 108(31):E374-382.
  • [34]Hayton K, Ranford-Cartwright LC, Walliker D: Sulfadoxine-pyrimethamine resistance in the rodent malaria parasite Plasmodium chabaudi. Antimicrobial Agents and Chemotherapy 2002, 46(8):2482-2489.
  • [35]Gossmann TI, Keightley PD, Eyre-Walker A: The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol Evol 2012, 4(5):658-667.
  • [36]Kumar A, Kumar K, Korde R, Puri SK, Malhotra P, Singh Chauhan V: Falcipain-1, a Plasmodium falciparum cysteine protease with vaccine potential. Infect Immun 2007, 75(4):2026-2034.
  • [37]Bell AS, De Roode JC, Sim D, Read AF: Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution 2006, 60(7):1358-1371.
  • [38]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999, 41(41):95-98.
  • [39]Kosakovsky Pond S, Posada D, Gravenor M, Woelk C, Frost S: GARD: a genetic algorithm for recombination detection. Bioinformatics 2006, 22(24):3096.
  • [40]Kosakovsky Pond S, Posada D, Gravenor M, Woelk C, Frost S: Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 2006, 23(10):1891.
  • [41]Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010, 26(19):2455-2457.
  • [42]Kosakovsky Pond SL, Delport W, Poon AFY, Frost SDW: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010, 26(19):2455-2457.
  • [43]Drummond : BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7(1):214-214.
  • [44]Bafort J: The biology of rodent malaria with particular reference to Plasmodium vinckei vinckei Rodhain 1952. Ann Soc Belge Méd Trop 1971, 51(1):5.
  • [45]Polihronakis M: Hierarchical comparative analysis of genetic and genitalic geographical structure: testing patterns of male and female genital evolution in the scarab beetle. Biol J Linn Soc 2009, 96:135-149.
  • [46]Gazis R, Rehner S, Chaverri P: Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 2011, 20(14):3001-3013.
  • [47]Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22(2):160-174.
  • [48]Sánchez R, Serra F, Tárraga J, Medina I, Carbonell J, Pulido L, de María A, Capella-Gutíerrez S, Huerta-Cepas J, Gabaldón T, et al.: Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res 2011, 39(Web Server issue):W470-474.
  • [49]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [50]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [51]Burnham KP, Anderson DR: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer; 2002.
  文献评价指标  
  下载次数:15次 浏览次数:24次