期刊论文详细信息
BMC Evolutionary Biology
A phylogenomic analysis of Escherichia coli / Shigella group: implications of genomic features associated with pathogenicity and ecological adaptation
Kui Lin1  Yan Zhang1 
[1] College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875, China
关键词: Adaptation;    Escherichia coli;    Pathogenicity;    Collinearity;    Phylogenomics;   
Others  :  1140324
DOI  :  10.1186/1471-2148-12-174
 received in 2012-05-20, accepted in 2012-08-28,  发布年份 2012
PDF
【 摘 要 】

Background

The Escherichia coli species contains a variety of commensal and pathogenic strains, and its intraspecific diversity is extraordinarily high. With the availability of an increasing number of E. coli strain genomes, a more comprehensive concept of their evolutionary history and ecological adaptation can be developed using phylogenomic analyses. In this study, we constructed two types of whole-genome phylogenies based on 34 E. coli strains using collinear genomic segments. The first phylogeny was based on the concatenated collinear regions shared by all of the studied genomes, and the second phylogeny was based on the variable collinear regions that are absent from at least one genome. Intuitively, the first phylogeny is likely to reveal the lineal evolutionary history among these strains (i.e., an evolutionary phylogeny), whereas the latter phylogeny is likely to reflect the whole-genome similarities of extant strains (i.e., a similarity phylogeny).

Results

Within the evolutionary phylogeny, the strains were clustered in accordance with known phylogenetic groups and phenotypes. When comparing evolutionary and similarity phylogenies, a concept emerges that Shigella may have originated from at least three distinct ancestors and evolved into a single clade. By scrutinizing the properties that are shared amongst Shigella strains but missing in other E. coli genomes, we found that the common regions of the Shigella genomes were mainly influenced by mobile genetic elements, implying that they may have experienced convergent evolution via horizontal gene transfer. Based on an inspection of certain key branches of interest, we identified several collinear regions that may be associated with the pathogenicity of specific strains. Moreover, by examining the annotated genes within these regions, further detailed evidence associated with pathogenicity was revealed.

Conclusions

Collinear regions are reliable genomic features used for phylogenomic analysis among closely related genomes while linking the genomic diversity with phenotypic differences in a meaningful way. The pathogenicity of a strain may be associated with both the arrival of virulence factors and the modification of genomes via mutations. Such phylogenomic studies that compare collinear regions of whole genomes will help to better understand the evolution and adaptation of closely related microbes and E. coli in particular.

【 授权许可】

   
2012 Zhang and Lin; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324210324165.pdf 575KB PDF download
Figure 4. 134KB Image download
Figure 3. 351KB Image download
Figure 2. 150KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, et al.: Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009, 5(1):e1000344.
  • [2]Donnenberg MS: Escherichia coli: virulence mechanisms of a versatile pathogen. Academic Press: Elsevier Science; 2002.
  • [3]Tenaillon O, Skurnik D, Picard B, Denamur E: The population genetics of commensal Escherichia coli. Nat Rev Microbiol 2010, 8:207-217.
  • [4]Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, Kodama T, Abe H, Nakayama K, Kurokawa K: Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 2009, 106(42):17939.
  • [5]Lukjancenko O, Wassenaar TM, Ussery DW: Comparison of 61 Sequenced Escherichia coli Genomes. Microb Ecol 2010, 60(4):708-720.
  • [6]Delsuc F, Brinkmann H, Philippe H: Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005, 6(5):361-375.
  • [7]Sims GE, Kim S-H: Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs). Proc Natl Acad Sci USA 2011, 108(20):8329-8334.
  • [8]Osbourn AE, Field B: Operons. Cell Mol Life Sci 2009, 66(23):3755-3775.
  • [9]Price MN, Arkin AP, Alm EJ: The Life-Cycle of Operons. PLoS Genet 2006, 2(6):e96.
  • [10]Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KV: Horizontal Transfer of the Photosynthesis Gene Cluster and Operon Rearrangement in Purple Bacteria. J Mol Evol 2001, 52:333-341.
  • [11]Darling ACE: Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Res 2004, 14(7):1394-1403.
  • [12]Angiuoli SV, Salzberg SL: Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 2011, 27:334-342.
  • [13]Koonin EV: Evolution of genome architecture. Int J Biochem Cell Biol 2009, 41(2):298-306.
  • [14]Pupo GM, Lan R, Reeves PR: Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 2000, 97:10567-10572.
  • [15]Vieira G, Sabarly V, Bourguignon P-Y, Durot M, Le Fevre F, Mornico D, Vallenet D, Bouvet O, Denamur E, Schachter V, et al.: Core and Panmetabolism in Escherichia coli. J Bacteriol 2011, 193(6):1461-1472.
  • [16]Rolland K, Lambert-Zechovsky N, Picard B, Denamur E: Shigella and enteroinvasive Escherichia coli strains are derived from distinct ancestral strains of E. coli. Microbiology 1998, 144:2667-2672.
  • [17]Haggerty LS, Martin FJ, Fitzpatrick DA, McInerney JO: Gene and genome trees conflict at many levels. Phil Trans R Soc B 2009, 364:2209-2219.
  • [18]Escobar-Paramo P, Giudicelli C, Parsot C, Denamur E: The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J Mol Evol 2003, 57:140-148.
  • [19]Maurelli AT: Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol Lett 2007, 267(1):1-8.
  • [20]Kaper JB, Nataro JP, Mobley HLT: Pathogenic Escherichia coli. Nat Rev Microbiol 2004, 2(2):123-140.
  • [21]Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405:299-304.
  • [22]Escobar-Paramo P, Clermont O, Blanc-Potard A-B, Bui H, nec àCLB, Denamur E: A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 2004, 21(6):1085-1094.
  • [23]Le Gall T, Clermont O: Gouriou Sp, Picard àB, Nassif X, Denamur E, Tenaillon O: Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic groupEscherichia colistrains. Mol Biol Evol 2007, 24(11):2373-2384.
  • [24]Butala M, Žgur-Bertok D, Busby SJW: The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2009, 66(1):82-93.
  • [25]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [26]Fernández De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R: Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 2000, 35(6):1560-1572.
  • [27]Nadler C, Baruch K, Kobi S, Mills E, Haviv G, Farago M, Alkalay I, Bartfeld S, Meyer TF, Ben-Neriah Y, et al.: The Type III Secretion Effector NleE Inhibits NF-κB Activation. PLoS Pathog 2010, 6(1):e1000743.
  • [28]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local Alignment Search Tool. J Mol Biol 1990, 215(3):403-410.
  • [29]Luo Y, Fu C, Zhang D-Y, Lin K: Overlapping genes as rare genomic markers: the phylogeny of gamma-Proteobacteria as a case study. Trends Genet 2006, 22(11):593-596.
  • [30]Mushegian AR, Koonin EV: Gene order is not conserved in bacterial evolution. Trends Genet 1996, 12:289-290.
  • [31]Wolf YI, Rogozin IB, Kondrashov AS, Koonin EV: Genome alignment, evolution of prokaryotic genome organization and prediction of gene function using genomic context. Genome Res 2001, 11:356-372.
  • [32]Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L, Lajus A, Rouy Z, Roche D, Salvignol G, Scarpelli C, et al.: MicroScope: a platform for microbial genome annotation and comparative genomics. Database 2009, 2009:bap021.
  • [33]Denamur E, Picard B, Tenaillon O: Population Genetics of Pathogenic Escherichia coli. In Bacterial Population Genetics in Infectious Disease. Edited by Robinson DA, Falush D, Feil EJ. Hoboken: John Wiley & Sons, Inc; 2010.
  • [34]Pagani I, Liolios K, Jansson J, Chen I-MA, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC: The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2012, 40:D571-D579.
  • [35]Sarkar I, Egan MG, Coruzzi G, Lee EK, Desalle R: Automated simultaneous analysis phylogenetics (ASAP): an enabling tool for phlyogenomics. BMC Bioinforma 2008, 9(1):103. BioMed Central Full Text
  • [36]Swofford D: PAUP*: phylogenetic analysis using parsimony, version 4.0 b10. 2003.
  • [37]Baker RH, DeSalle R: Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst Biol 1997, 46(4):654-673.
  • [38]Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington; 2005.
  文献评价指标  
  下载次数:30次 浏览次数:34次