期刊论文详细信息
BMC Microbiology
Using phage display selected antibodies to dissect microbiomes for complete de novo genome sequencing of low abundance microbes
Andrew RM Bradbury2  Cliff S Han2  Csaba Kiss2  Srinivas Iyer2  Timothy C Sanchez2  Nileena Velappan2  Krista G Reitenga2  Hajnalka E Daligault2  Ashlynn R Daughton2  Sandeep Kumar2  Armand EK Dichosa2  Fortunato Ferrara1  Devin W Close2 
[1] New Mexico Consortium, Los Alamos, NM, USA;Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
关键词: Flow cytometry;    MDA;    Single cell genomics;    Genome completion;    Phage antibodies;   
Others  :  1142602
DOI  :  10.1186/1471-2180-13-270
 received in 2013-08-31, accepted in 2013-11-21,  发布年份 2013
【 摘 要 】

Background

Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes.

Methods

We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS). Single chain (scFv) antibodies are selected using phage display against a bacteria or microbial community, resulting in species-specific antibodies that can be used in FACS for relative quantification of an organism in a community, as well as enrichment or depletion prior to genome sequencing.

Results

We selected antibodies against Lactobacillus acidophilus and demonstrate a FACS-based approach for identification and enrichment of the organism from both laboratory-cultured and commercially derived bacterial mixtures. The ability to selectively enrich for L. acidophilus when it is present at a very low abundance (<0.2%) leads to complete (>99.8%) de novo genome coverage whereas the standard single-cell sequencing approach is incomplete (<68%). We show that specific antibodies can be selected against L. acidophilus when the monoculture is used as antigen as well as when a community of 10 closely related species is used demonstrating that in principal antibodies can be generated against individual organisms within microbial communities.

Conclusions

The approach presented here demonstrates that phage-selected antibodies against bacteria enable identification, enrichment of rare species, and depletion of abundant organisms making it tractable to virtually any microbe or microbial community. Combining antibody specificity with FACS provides a new approach for characterizing and manipulating microbial communities prior to genome sequencing.

【 授权许可】

   
2013 Close et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 5. 49KB Image download
Figure 5. 90KB Image download
Figure 4. 53KB Image download
Figure 3. 72KB Image download
Figure 2. 66KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 5.

【 参考文献 】
  • [1]Ley RE, Peterson DA, Gordon JI: Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124:837-848.
  • [2]Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
  • [3]Tremaroli V, Backhed F: Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489:242-249.
  • [4]Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004, 101:15718-15723.
  • [5]Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C: The gut microbiota regulates bone mass in mice. J Bone Miner Res 2012, 27:1357-1367.
  • [6]Franks I: Microbiota: gut microbes might promote intestinal angiogenesis. Nat Rev Gastroenterol Hepatol 2012, 10:3.
  • [7]Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, et al.: Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469:543-547.
  • [8]Cerf-Bensussan N, Gaboriau-Routhiau V: The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 2010, 10:735-744.
  • [9]Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, et al.: The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
  • [10]Man SM, Kaakoush NO, Mitchell HM: The role of bacteria and pattern-recognition receptors in Crohn’s disease. Nat Rev Gastroenterol Hepatol 2011, 8:152-168.
  • [11]Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, et al.: Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008, 455:1109-1113.
  • [12]Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M: Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010, 5:e9085.
  • [13]Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science 2005, 307:1915-1920.
  • [14]Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444:1027-1031.
  • [15]Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444:1022-1023.
  • [16]Thomas T, Gilbert J, Meyer F: Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2012, 2:3. BioMed Central Full Text
  • [17]Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA: Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 1986, 40:337-365.
  • [18]Weinstock GM: Genomic approaches to studying the human microbiota. Nature 2012, 489:250-256.
  • [19]Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH: Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013, 31:533-538.
  • [20]Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, Wilkins MJ, Hettich RL, Lipton MS, Williams KH, et al.: Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 2012, 337:1661-1665.
  • [21]Dohm JC, Lottaz C, Borodina T, Himmelbauer H: Sustantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 2008, 36(16):e105.
  • [22]Warnecke F, Hugenholtz P: Building on basic metagenomics with complementary technologies. Genome Biol 2007, 8:231. BioMed Central Full Text
  • [23]Lasken RS: Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 2007, 10:510-516.
  • [24]Dichosa AE, Fitzsimons MS, Lo CC, Weston LL, Preteska LG, Snook JP, Zhang X, Gu W, McMurry K, Green LD, et al.: Artificial polyploidy improves bacterial single cell genome recovery. PLoS One 2012, 7:e37387.
  • [25]Binga EK, Lasken RS, Neufeld JD: Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2008, 2:233-241.
  • [26]Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, et al.: Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 2002, 99:5261-5266.
  • [27]Dean FB, Nelson JR, Giesler TL, Lasken RS: Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 2001, 11:1095-1099.
  • [28]Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR: Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 2007, 104:11889-11894.
  • [29]Ballantyne KN, van Oorschot RA, Muharam I, van Daal A, John Mitchell R: Decreasing amplification bias associated with multiple displacement amplification and short tandem repeat genotyping. Anal Biochem 2007, 368:222-229.
  • [30]Pan X, Urban AE, Palejev D, Schulz V, Grubert F, Hu Y, Snyder M, Weissman SM: A procedure for highly specific, sensitive, and unbiased whole-genome amplification. Proc Natl Acad Sci USA 2008, 105:15499-15504.
  • [31]Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, et al.: Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013, 499(7459):431-437. doi: 10.1038/nature12352. Epub 2013 Jul 14
  • [32]Zong C, Lu S, Chapman AR, Xie XS: Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 2012, 338:1622-1626.
  • [33]Fitzsimons MS, Novotny M, Lo CC, Dichosa AE, Yee-Greenbaum JL, Snook JP, Gu W, Chertkov O, Davenport KW, McMurry K, et al.: Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome. Genome Res 2013, 23:878-888.
  • [34]McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall AP, Yang Y, Dupont CL, et al.: Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 2013, 110:E2390-E2399.
  • [35]Kaur IP, Kuhad A, Garg A, Chopra K: Probiotics: delineation of prophylactic and therapeutic benefits. J Med Food 2009, 12:219-235.
  • [36]Sblattero D, Bradbury A: Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 2000, 18:75-80.
  • [37]Ferrara F, Listwan P, Waldo GS, Bradbury ARM: Fluorescent labeling of antibody fragments using split GFP. PLoS One 2011, 6(10):e25727. doi: 10.1371/journal.pone.0025727. Epub 2011 Oct 5
  • [38]Hanke T, Szawlowski P, Randall RE: Construction of solid matrix-antibody-antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. J Gen Virol 1992, 73(Pt 3):653-660.
  • [39]Cabantous S, Terwilliger TC, Waldo GS: Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 2005, 23:102-107.
  • [40]Claesson MJ, Sinderen DV, O’Toole PW: Lactobacillus phylogenomics, Äì towards a reclassification of the genus. Int J Syst Evol Microbiol 2008, 58:2945-2954.
  • [41]Messner P, Steiner K, Zarschler K, Schaffer C: S-layer nanoglycobiology of bacteria. Carbohydr Res 2008, 343:1934-1951.
  • [42]Sara M, Sleytr UB: S-Layer Proteins. J Bacteriol 2000, 182:859-868.
  • [43]Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D, McCutcheon JP, McDonald BR, et al.: One bacterial cell, one complete genome. PLoS One 2010, 5:e10314.
  • [44]Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF: Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 2011, 6:e26161.
  • [45]Blainey PC, Quake SR: Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res 2011, 39:e19.
  • [46]Seth-Smith HM, Harris SR, Skilton RJ, Radebe FM, Golparian D, Shipitsyna E, Duy PT, Scott P, Cutcliffe LT, O’Neill C, et al.: Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Genome Res 2013, 23:855-866.
  • [47]Xu JL, Davis MM: Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 2000, 13:37-45.
  • [48]Larimore K, McCormick MW, Robins HS, Greenberg PD: Shaping of human germline IgH repertoires revealed by deep sequencing. J Immunol 2012, 189(6):3221-3230. doi: 10.4049/jimmunol.1201303. Epub 2012 Aug 3
  • [49]Nicaise M, Valerio-Lepiniec M, Minard P, Desmadril M: Affinity transfer by CDR grafting on a nonimmunoglobulin scaffold. Protein Sci 2004, 13:1882-1891.
  • [50]D’Angelo S, Glanville J, Ferrara F, Naranjo L, Gleasner CD, Shen X, Bradbury ARM, Kiss C: The antibody mining toolbox: An open source tool for the rapid analysis of antibody repertoires. mAbs 2014, 6:0-1.
  • [51]Bradbury AR, Sidhu S, Dubel S, McCafferty J: Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 2011, 29:245-254.
  • [52]Konstantinov SR, Smidt H, de Vos WM, Bruijns SCM, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y: S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 2008, 105:19474-19479.
  • [53]Martinez MG, Prado Acosta M, Candurra NA, Ruzal SM: S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun 2012, 422:590-595.
  • [54]Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y-i, Sugahara J, Preston C, Torre J, Richardson PM, DeLong EF: Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci 2006, 103:18296-18301.
  • [55]Lasken RS: Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 2012, 10:631-640.
  • [56]Morgan JL, Darling AE, Eisen JA: Metagenomic sequencing of an In vitro-simulated microbial community. PLoS One 2010, 5(4):e10209. doi: 10.1371/journal.pone.0010209
  • [57]Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, et al.: Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 2006, 443:950-955.
  • [58]Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW: Whole genome amplification and de novo assembly of single bacterial cells. PLoS One 2009, 4:e6864.
  • [59]Lou J, Marzari R, Verzillo V, Ferrero F, Pak D, Sheng M, Yang C, Sblattero D, Bradbury A: Antibodies in haystacks: how selection strategy influences the outcome of selection from molecular diversity libraries. J Immunol Methods 2001, 253:233-242.
  • [60]Buhr DL, Acca FE, Holland EG, Johnson K, Maksymiuk GM, Vaill A, Kay BK, Weitz DA, Weiner MP, Kiss MM: Use of micro-emulsion technology for the directed evolution of antibodies. Methods 2012, 58:28-33.
  • [61]Kiss MM, Babineau EG, Bonatsakis M, Buhr DL, Maksymiuk GM, Wang D, Alderman D, Gelperin DM, Weiner MP: Phage ESCape: an emulsion-based approach for the selection of recombinant phage display antibodies. J Immunol Methods 2010, 367:17-26.
  • [62]Liu Y, Adams JD, Turner K, Cochran FV, Gambhir SS, Soh HT: Controlling the selection stringency of phage display using a microfluidic device. Lab Chip 2009, 9:1033-1036.
  • [63]Persson J, Augustsson P, Laurell T, Ohlin M: Acoustic microfluidic chip technology to facilitate automation of phage display selection. FEBS J 2008, 275:5657-5666.
  • [64]Wang J, Liu Y, Teesalu T, Sugahara KN, Kotamrajua VR, Adams JD, Ferguson BS, Gong Q, Oh SS, Csordas AT, et al.: Selection of phage-displayed peptides on live adherent cells in microfluidic channels. Proc Natl Acad Sci USA 2011, 108:6909-6914.
  • [65]Sorensen MD, Kristensen P: Selection of antibodies against a single rare cell present in a heterogeneous population using phage display. Nat Protoc 2011, 6:509-522.
  • [66]Sorensen MD, Agerholm IE, Christensen B, Kolvraa S, Kristensen P: Microselection–affinity selecting antibodies against a single rare cell in a heterogeneous population. J Cell Mol Med 2010, 14:1953-1961.
  • [67]Kalyuzhnaya MG, Zabinsky R, Bowerman S, Baker DR, Lidstrom ME, Chistoserdova L: Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Appl Environ Microbiol 2006, 72:4293-4301.
  • [68]Koser CU, Ellington MJ, Cartwright EJ, Gillespie SH, Brown NM, Farrington M, Holden MT, Dougan G, Bentley SD, Parkhill J, Peacock SJ: Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 2012, 8:e1002824.
  • [69]Chan JZ, Pallen MJ, Oppenheim B, Constantinidou C: Genome sequencing in clinical microbiology. Nat Biotechnol 2012, 30:1068-1071.
  • [70]Studier FW: Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 2005, 41:207-234.
  • [71]Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007, 73:5261-5267.
  文献评价指标  
  下载次数:16次 浏览次数:14次