期刊论文详细信息
BMC Microbiology
Characterization and regulation of the Resistance-Nodulation-Cell Division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora
Helge Weingart1  Daniel Pletzer1 
[1] School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
关键词: CpxR;    BaeR;    MdtUVW;    MdtABC;    RND transporter;    Multidrug efflux;    Erwinia amylovora;    Fire blight;    Plant pathogen;   
Others  :  1140759
DOI  :  10.1186/1471-2180-14-185
 received in 2014-05-09, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump.

Results

To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment.

Conclusions

The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in resistance to plant antimicrobials, maybe including flavonoids, which were identified as substrates of both pumps. Furthermore, we found that the mdtABC operon belongs to the regulon of the two-component regulator BaeR suggesting a role of this RND transporter in the cell envelope stress response of E. amylovora.

【 授权许可】

   
2014 Pletzer and Weingart; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325103318520.pdf 712KB PDF download
Figure 3. 40KB Image download
Figure 2. 102KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Vanneste J: Fire blight: The disease and its causative agent, Erwinia amylovora. Oxon, UK: CABI Publishing; 2000.
  • [2]Nicholson RL, Hammerschmidt R: Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 1992, 30:369-389.
  • [3]Zgurskaya HI, Krishnamoorthy G, Tikhonova EB, Lau SY, Stratton KL: Mechanism of antibiotic efflux in Gram-negative bacteria. Front Biosci 2003, 8:s862-873.
  • [4]Piddock LJ: Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006, 19:382-402.
  • [5]Nikaido H: Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996, 178:5853-5859.
  • [6]Walsh C: Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406:775-781.
  • [7]Burse A, Weingart H, Ullrich MS: The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant-Microbe Interact 2004, 17:43-54.
  • [8]Murakami S, Nakashima R, Yamashita E, Yamaguchi A: Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002, 419:587-593.
  • [9]Zgurskaya HI, Nikaido H: Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci U S A 1999, 96:7190-7195.
  • [10]Seeger MA, von Ballmoos C, Eicher T, Brandstatter L, Verrey F, Diederichs K, Pos KM: Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol 2008, 15:199-205.
  • [11]Kim HS, Nagore D, Nikaido H: Multidrug efflux pump MdtBC of Escherichia coli is active only as a B2C heterotrimer. J Bacteriol 2010, 192:1377-1386.
  • [12]Kim HS, Nikaido H: Different functions of MdtB and MdtC subunits in the heterotrimeric efflux transporter MdtB2C complex of Escherichia coli. Biochemistry 2012, 51:4188-4197.
  • [13]Nagakubo S, Nishino K, Hirata T, Yamaguchi A: The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002, 184:4161-4167.
  • [14]Baranova N, Nikaido H: The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 2002, 184:4168-4176.
  • [15]Nishino K, Nikaido E, Yamaguchi A: Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 2007, 189:9066-9075.
  • [16]Wang D, Fierke CA: The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 2013, 5:372-383.
  • [17]Appia-Ayme C, Patrick E, Sullivan MJ, Alston MJ, Field SJ, AbuOun M, Anjum MF, Rowley G: Novel inducers of the envelope stress response BaeSR in Salmonella Typhimurium: BaeR is critically required for tungstate waste disposal. PLoS One 2011, 6:e23713.
  • [18]Raffa RG, Raivio TL: A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol 2002, 45:1599-1611.
  • [19]Leblanc SK, Oates CW, Raivio TL: Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli. J Bacteriol 2011, 193:3367-3375.
  • [20]Zoetendal EG, Smith AH, Sundset MA, Mackie RI: The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. Appl Environ Microbiol 2008, 74:535-539.
  • [21]Price NL, Raivio TL: Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol 2009, 191:1798-1815.
  • [22]Raivio TL, Silhavy TJ: Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 2001, 55:591-624.
  • [23]Vogt SL, Raivio TL: Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 2012, 326:2-11.
  • [24]Raivio TL, Popkin DL, Silhavy TJ: The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 1999, 181:5263-5272.
  • [25]Otto K, Silhavy TJ: Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 2002, 99:2287-2292.
  • [26]Hirakawa H, Nishino K, Hirata T, Yamaguchi A: Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Bacteriol 2003, 185:1851-1856.
  • [27]Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A: Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 2005, 55:1113-1126.
  • [28]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
  • [29]Gonnet GH, Hallett MT, Korostensky C, Bernardin L: Darwin v. 2.0: an interpreted computer language for the biosciences. Bioinformatics 2000, 16:101-103.
  • [30]Frawley ER, Crouch ML, Bingham-Ramos LK, Robbins HF, Wang W, Wright GD, Fang FC: Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella Typhimurium. Proc Natl Acad Sci U S A 2013, 110:12054-12059.
  • [31]Bernsel A, Viklund H, Hennerdal A, Elofsson A: TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 2009, 37:W465-468.
  • [32]Saier MH Jr, Tam R, Reizer A, Reizer J: Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 1994, 11:841-847.
  • [33]Paulsen IT, Brown MH, Skurray RA: Proton-dependent multidrug efflux systems. Microbiol Rev 1996, 60:575-608.
  • [34]Pletzer D, Weingart H: Characterization of AcrD, a resistance-nodulation-cell division-type multidrug efflux pump from the fire blight pathogen Erwinia amylovora. BMC Microbiol 2014, 14:13. BioMed Central Full Text
  • [35]Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A: Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 2006, 443:173-179.
  • [36]Nishino K, Latifi T, Groisman EA: Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006, 59:126-141.
  • [37]Treutter D: Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 2005, 7:581-591.
  • [38]Scalbert A: Antimicrobial properties of tannins. Phytochemistry 1991, 30:3875-3883.
  • [39]Halbwirth H, Fischer TC, Roemmelt S, Spinelli F, Schlangen K, Peterek S, Sabatini E, Messina C, Speakman JB, Andreotti C, Rademacher W, Bazzi C, Costa G, Treutter D, Forkmann G, Stich K: Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight. Z Naturforsch C 2003, 58:765-770.
  • [40]Schofield P, Mbugua DM, Pell AN: Analysis of condensed tannins: a review. Anim Feed Sci Technol 2001, 91:21-40.
  • [41]Hirakawa H, Nishino K, Yamada J, Hirata T, Yamaguchi A: β-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Antimicrob Chemother 2003, 52:576-582.
  • [42]Xu HX, Lee SF: Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res 2001, 15:39-43.
  • [43]Cushnie TP, Lamb AJ: Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005, 26:343-356.
  • [44]Cushnie TP, Lamb AJ: Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011, 38:99-107.
  • [45]Sambrook J, Russell DW: Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Press; 2001.
  • [46]Zumaquero A, Macho AP, Rufián JS, Beuzón CR: Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol 2010, 192:4474-4488.
  • [47]Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP: A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212:77-86.
  • [48]Cherepanov PP, Wackernagel W: Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158:9-14.
  • [49]Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard. 9th edition. Wayne, PA: CLSI document M7-A7; 2012.
  • [50]Hobert O: PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 2002, 32:728-730.
  • [51]Hornik K: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
  • [52]May R, Völksch B, Kampmann G: Antagonistic activities of epiphytic bacteria from soybean leaves against Pseudomonas syringae pv. glycinea in vitro and in planta. Microb Ecol 1997, 34:118-124.
  • [53]Schenk A, Weingart H, Ullrich MS: Extraction of high-quality bacterial RNA from infected leaf tissue for bacterial in planta gene expression analysis by multiplexed fluorescent Northern hybridization. Mol Plant Pathol 2008, 9:227-235.
  • [54]McGhee GC, Jones AL: Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. Appl Environ Microbiol 2000, 66:4897-4907.
  • [55]Takle GW, Toth IK, Brurberg MB: Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol 2007, 7:50. BioMed Central Full Text
  • [56]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16:944-945.
  • [57]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
  • [58]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290-301.
  文献评价指标  
  下载次数:37次 浏览次数:11次