期刊论文详细信息
BMC Systems Biology
Reaction-contingency based bipartite Boolean modelling
Marcus Krantz1  Edda Klipp1  Falko Krause1  Max Flöttmann1 
[1] Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, Berlin 10115, Germany
关键词: Bipartite Boolean;    rxncon;    Boolean modelling;    Systems biology;    Signal transduction;   
Others  :  1142627
DOI  :  10.1186/1752-0509-7-58
 received in 2012-11-05, accepted in 2013-06-14,  发布年份 2013
PDF
【 摘 要 】

Background

Intracellular signalling systems are highly complex, rendering mathematical modelling of large signalling networks infeasible or impractical. Boolean modelling provides one feasible approach to whole-network modelling, but at the cost of dequantification and decontextualisation of activation. That is, these models cannot distinguish between different downstream roles played by the same component activated in different contexts.

Results

Here, we address this with a bipartite Boolean modelling approach. Briefly, we use a state oriented approach with separate update rules based on reactions and contingencies. This approach retains contextual activation information and distinguishes distinct signals passing through a single component. Furthermore, we integrate this approach in the rxncon framework to support automatic model generation and iterative model definition and validation. We benchmark this method with the previously mapped MAP kinase network in yeast, showing that minor adjustments suffice to produce a functional network description.

Conclusions

Taken together, we (i) present a bipartite Boolean modelling approach that retains contextual activation information, (ii) provide software support for automatic model generation, visualisation and simulation, and (iii) demonstrate its use for iterative model generation and validation.

【 授权许可】

   
2013 Flöttmann et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328101054661.pdf 2742KB PDF download
Figure 5. 86KB Image download
Figure 4. 193KB Image download
Figure 3. 131KB Image download
Figure 2. 59KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kauffman S: Homeostasis and differentiation in random genetic control networks. Nature 1969, 224:177-178.
  • [2]Flottmann M, Scharp T, Klipp E: A stochastic model of epigenetic dynamics in somatic cell reprogramming. Frontiers in physiology 2012, 3:216.
  • [3]Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B: A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 2007, 3:e163.
  • [4]Bauer AL, Jackson TL, Jiang Y, Rohlf T: Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J Theor Biol 2010, 264:838-846.
  • [5]Di Cara A, Garg A, De Micheli G, Xenarios I, Mendoza L: Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics 2007, 8:462. BioMed Central Full Text
  • [6]Krumsiek J, Polsterl S, Wittmann DM, Theis FJ: Odefy–from discrete to continuous models. BMC Bioinformatics 2010, 11:233. BioMed Central Full Text
  • [7]Tiger CF, Krause F, Cedersund G, Palmer R, Klipp E, Hohmann S, Kitano H, Krantz M: A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol 2012, 8:578.
  • [8]Rother M, Münzner U, Thieme S, Krantz M: Information content and scalability in signal transduction network reconstruction formats. Mol Biosyst 2013, 9(8):1993-2004. Epub 2013 May 2
  • [9]Kolczyk K, Samaga R, Conzelmann H, Mirschel S, Conradi C: The process-interaction-model: a common representation of rule-based and logical models allows studying signal transduction on different levels of detail. BMC Bioinformatics 2012, 13:251. BioMed Central Full Text
  • [10]Handorf T, Klipp E: Modeling mechanistic biological networks: an advanced Boolean approach. Bioinformatics (Oxford, England) 2012, 28:557-563.
  • [11]Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for life scientists. Source code for biology and medicine 2008, 3:16. BioMed Central Full Text
  • [12]Krause F, Schulz M, Ripkens B, Flöttmann M, Krantz M, Klipp E, Handorf T: Biographer: web-based editing and rendering of SBGN compliant biochemical networks. Bioinformatics 2013, 29(11):1467-1468. Epub 2013 Apr 10
  • [13]Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, et al.: The systems biology graphical notation. Nat Biotechnol 2009, 27:735-741.
  • [14]Hohmann S: Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 2009, 583:4025-4029.
  • [15]Levin DE: Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 2011, 189:1145-1175.
  • [16]Bardwell L: A walk-through of the yeast mating pheromone response pathway. Peptides 2005, 26:339-350.
  • [17]Garcia-Rodriguez LJ, Valle R, Duran A, Roncero C: Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 2005, 579:6186-6190.
  • [18]Thomson TM, Benjamin KR, Bush A, Love T, Pincus D, Resnekov O, Yu RC, Gordon A, Colman-Lerner A, Endy D, Brent R: Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proc Natl Acad Sci USA 2011, 108:20265-20270.
  • [19]Manney TR: Expression of the BAR1 gene in Saccharomyces cerevisiae: induction by the alpha mating pheromone of an activity associated with a secreted protein. J Bacteriol 1983, 155:291-301.
  • [20]Bao MZ, Schwartz MA, Cantin GT, Yates JR 3rd, Madhani HD: Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell 2004, 119:991-1000.
  文献评价指标  
  下载次数:70次 浏览次数:18次