期刊论文详细信息
BMC Neuroscience
Reducing multi-sensor data to a single time course that reveals experimental effects
Stanislas Dehaene2  Sebastien Marti1  Aaron Schurger1 
[1] Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, I2BM, NeuroSpin center, Gif sur Yvette 91191, France;Collège de France, 11 Place Marcelin Berthelot, Paris 75005, France
关键词: fMRI;    ECoG;    MEG;    EEG;    Decoding;    Functional magnetic resonance imaging;    Electrocorticography;    Magnetoencephalography;    Electroencephalography;    Spatial filter;   
Others  :  1139997
DOI  :  10.1186/1471-2202-14-122
 received in 2013-01-16, accepted in 2013-09-19,  发布年份 2013
PDF
【 摘 要 】

Background

Multi-sensor technologies such as EEG, MEG, and ECoG result in high-dimensional data sets. Given the high temporal resolution of such techniques, scientific questions very often focus on the time-course of an experimental effect. In many studies, researchers focus on a single sensor or the average over a subset of sensors covering a “region of interest” (ROI). However, single-sensor or ROI analyses ignore the fact that the spatial focus of activity is constantly changing, and fail to make full use of the information distributed over the sensor array.

Methods

We describe a technique that exploits the optimality and simplicity of matched spatial filters in order to reduce experimental effects in multivariate time series data to a single time course. Each (multi-sensor) time sample of each trial is replaced with its projection onto a spatial filter that is matched to an observed experimental effect, estimated from the remaining trials (Effect-Matched Spatial filtering, or EMS filtering). The resulting set of time courses (one per trial) can be used to reveal the temporal evolution of an experimental effect, which distinguishes this approach from techniques that reveal the temporal evolution of an anatomical source or region of interest.

Results

We illustrate the technique with data from a dual-task experiment and use it to track the temporal evolution of brain activity during the psychological refractory period. We demonstrate its effectiveness in separating the means of two experimental conditions, and in significantly improving the signal-to-noise ratio at the single-trial level. It is fast to compute and results in readily-interpretable time courses and topographies. The technique can be applied to any data-analysis question that can be posed independently at each sensor, and we provide one example, using linear regression, that highlights the versatility of the technique.

Conclusion

The approach described here combines established techniques in a way that strikes a balance between power, simplicity, speed of processing, and interpretability. We have used it to provide a direct view of parallel and serial processes in the human brain that previously could only be measured indirectly. An implementation of the technique in MatLab is freely available via the internet.

【 授权许可】

   
2013 Schurger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324042610389.pdf 2555KB PDF download
Figure 7. 112KB Image download
Figure 6. 217KB Image download
Figure 5. 116KB Image download
Figure 4. 145KB Image download
Figure 3. 172KB Image download
Figure 2. 166KB Image download
Figure 1. 113KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Parra LC, Spence CD, Gerson AD, Sajda P: Recipes for the linear analysis of EEG. Neuroimage 2005, 28(2):326-341.
  • [2]Parra L, Alvino C, Tang A, Pearlmutter B, Yeung N, Osman A, Sajdal P: Linear spatial integration for single-trial detection in encephalography. Neuroimage 2002, 17(1):223-230.
  • [3]Turin GL: An Introduction to Matched Filters. IRE Trans Info Theory 1960, 6(3):311-329.
  • [4]Brunelli R, Poggio T: Template Matching: Matched Spatial Filters and Beyond. Pattern Recognit 1995, 30(5):751-768.
  • [5]Marti S, Sigman M, Dehaene S: A shared cortical bottleneck underlying Attentional Blink and Psychological Refractory Period. Neuroimage 2012, 59(3):2883-2898.
  • [6]Pashler H: Dual-Task Interference in Simple Tasks: Data and Theory. Psychol Bull 1994, 116(2):220-244.
  • [7]Zylberberg A, Fernandez Slezak D, Roelfsema PR, Dehaene S, Sigman M: The brain's router: a cortical network model of serial processing in the primate brain. PLoS Comp Biol 2010, 6(4):e1000765.
  • [8]Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker C: Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neuro 2009, 12(5):535-540.
  • [9]Vul E, Harris C, Winkielman P, Pashler H: Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition. Perspect Psychol Sci 2009, 4(3):274-290.
  • [10]Shibasaki H, Hallett M: What is the Bereitschaftspotential. Clin Neurophysiol 2006, 117(11):2341-2356.
  • [11]Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al.: Scikit-learn: Machine Learning in Python. J Mach Learn Res 2011, 12:2825-2830.
  • [12]Oostenveld R, Fries P, Maris E, Schoffelen JM: FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci 2011 2011. Article ID 156869, 9 pages, doi:10.1155/2011/156869
  • [13]Bell A, Sejnowski TJ: An information-maximization approach to blind separation and blind deconvolution. Neural Comput 1995, 7(6):1129-1159.
  • [14]Hyvärinen A, Oja E: Independent component analysis: algorithms and applications. Neural Netw 2000, 13(4–5):411-430.
  • [15]Jung T-P, Makeig S, Humphries C, Lee T-W, McKeown M, Iragui V, Sejnowski TJ: Removing electroencephalographic artifacts by blind source separation. Phsychophysiol 2000, 37:163-178.
  • [16]Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL, Berry MJ 2nd: Selectivity for multiple stimulus features in retinal ganglion cells. J Neurophysiol 2006, 96(5):2724-2738.
  • [17]Brenner N, Bialek W, De Ruyter Van Steveninck R: Adaptive rescaling maximizes information transmission. Neuron 2000, 26(3):695-702.
  • [18]McIntosh AR, Bookstein FL, Haxby JV, Grady CL: Spatial pattern analysis of functional brain images using partial least squares. Neuroimage 1996, 3(3 Pt 1):143-157.
  • [19]Skrandies W: Global Field Power and Topographic Similarity. Brain Topogr 1990, 3(1):137-141.
  • [20]Sigman M, Dehaene S: Brain mechanisms of serial and parallel processing during dual-task performance. J Neurosci 2008, 28:7585-7598.
  • [21]Hesselmann G, Sadaghiani S, Friston KJ, Kleinschmidt A: Predictive coding or evidence accumulation? False inference and neuronal fluctuations. PLoS ONE 5(3):e9926.
  • [22]de Cheveigné A, Simon JZ: Denoising based on spatial filtering. J Neurosci Methods 2008, 171(2):331-339.
  • [23]Särelä J, Valpola H: Denoising Source Separation. J Mach Learn Res 2005, 6:233-272.
  • [24]Koles Z: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroenceph Clin Neurophysiol 1997, 79(6):440-447.
  • [25]Owen F, Kenneth PC, Joseph M: The analytic common spatial patterns method for EEG-based BCI data. J Neural Eng 2012, 9(4):045009.
  • [26]de Cheveigne A, Simon JZ: Sensor noise suppression. J Neurosci Methods 2008, 168(1):195-202.
  • [27]Lehmann D, Ozaki H, Pal I: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroenceph Clin Neurophysiol 1987, 67:271-288.
  • [28]Hesselmann G, Flandin G, Dehaene S: Probing the cortical network underlying the psychological refractory period: A combined EEG-fMRI study. Neuroimage 2011, 56(3):1608-1621.
  • [29]Hastie T, Tibshirani RJ, Friedman R: The Elements of Statistical Learning. New York, NY: Springer-Verlag; 2008. DOI-10:0387848576
  文献评价指标  
  下载次数:113次 浏览次数:44次