期刊论文详细信息
BMC Microbiology
The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen
Jens Harder1  Richard Reinhardt4  Bruno Hüttel4  Thomas Schweder3  Dörte Becher2  Stephanie Markert3  Eva-Maria Disch1  Jan Petasch1 
[1] Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen D-28359, Germany;Department of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany;Department of Pharmaceutical Biotechnology, Ernst-Moritz-Arndt-University, Greifswald, Germany;Max Planck Genome Centre Cologne, Cologne, Germany
关键词: Phellandrene;    Limonene;    Biodegradation;    Isoprenoids;    Monoterpene;   
Others  :  1140938
DOI  :  10.1186/1471-2180-14-164
 received in 2014-02-14, accepted in 2014-06-12,  发布年份 2014
PDF
【 摘 要 】

Background

The facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen utilizes acyclic, monocyclic and bicyclic monoterpenes as sole carbon source under oxic as well as anoxic conditions. A biotransformation pathway of the acyclic β-myrcene required linalool dehydratase-isomerase as initial enzyme acting on the hydrocarbon. An in-frame deletion mutant did not use myrcene, but was able to grow on monocyclic monoterpenes. The genome sequence and a comparative proteome analysis together with a random transposon mutagenesis were conducted to identify genes involved in the monocyclic monoterpene metabolism. Metabolites accumulating in cultures of transposon and in-frame deletion mutants disclosed the degradation pathway.

Results

Castellaniella defragrans 65Phen oxidizes the monocyclic monoterpene limonene at the primary methyl group forming perillyl alcohol. The genome of 3.95 Mb contained a 70 kb genome island coding for over 50 proteins involved in the monoterpene metabolism. This island showed higher homology to genes of another monoterpene-mineralizing betaproteobacterium, Thauera terpenica 58EuT, than to genomes of the family Alcaligenaceae, which harbors the genus Castellaniella. A collection of 72 transposon mutants unable to grow on limonene contained 17 inactivated genes, with 46 mutants located in the two genes ctmAB (cyclic terpene metabolism). CtmA and ctmB were annotated as FAD-dependent oxidoreductases and clustered together with ctmE, a 2Fe-2S ferredoxin gene, and ctmF, coding for a NADH:ferredoxin oxidoreductase. Transposon mutants of ctmA, B or E did not grow aerobically or anaerobically on limonene, but on perillyl alcohol. The next steps in the pathway are catalyzed by the geraniol dehydrogenase GeoA and the geranial dehydrogenase GeoB, yielding perillic acid. Two transposon mutants had inactivated genes of the monoterpene ring cleavage (mrc) pathway. 2-Methylcitrate synthase and 2-methylcitrate dehydratase were also essential for the monoterpene metabolism but not for growth on acetate.

Conclusions

The genome of Castellaniella defragrans 65Phen is related to other genomes of Alcaligenaceae, but contains a genomic island with genes of the monoterpene metabolism. Castellaniella defragrans 65Phen degrades limonene via a limonene dehydrogenase and the oxidation of perillyl alcohol. The initial oxidation at the primary methyl group is independent of molecular oxygen.

【 授权许可】

   
2014 Petasch et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325154821425.pdf 424KB PDF download
Figure 3. 31KB Image download
Figure 2. 28KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kesselmeier J, Staudt M: Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 1999, 33:23-88.
  • [2]Turek C, Stintzing FC: Stability of essential oils: a review. Compr Rev Food Sci Food Saf 2013, 12:40-53.
  • [3]Schrader J: Microbial flavour production. In Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability. 1st edition. Edited by Berger RG. Springer-Verlag New York: LLC; 2007.
  • [4]Dhavalik RS, Bhattach PK: Fermentation of limonene by a soil pseudomonad. Indian J Biochem 1966, 3:144-157.
  • [5]Forster-Fromme K, Jendrossek D: Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis. FEMS Microbiol Lett 2006, 264:220-225.
  • [6]Bhattacharyya PK, Prema BR, Kulkarni BD, Pradhan SK: Microbiological transformation of terpenes - hydroxylation of alpha-pinene. Nature 1960, 187:689-690.
  • [7]Lehnert N, Krings U, Sydes D, Wittig M, Berger RG: Bioconversion of car-3-ene by a dioxygenase of Pleurotus sapidus. J Biotechnol 2012, 159:329-335.
  • [8]Gibbon GH, Pirt SJ: The degradation of alpha-pinene by Pseudomonas PX1. FEBS Lett 1971, 18:103-105.
  • [9]Esmaeili A, Tavassoli A: Microbial transformation of citral by Penicillium sp. Acta Biochim Pol 2010, 57:265-268.
  • [10]Geron C, Rasmussen R, Arnts RR, Guenther A: A review and synthesis of monoterpene speciation from forests in the United States. Atmos Environ 2000, 34:1761-1781.
  • [11]Maróstica MR, Pastore GM: Biotransformation of limonene: a review of the main methabolic pathways. Quim Nova 2007, 30:382-387.
  • [12]Molina G, Pimentel MR, Pastore GM: Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl Microbiol Biotechnol 2013, 97:1851-1864.
  • [13]Schewe H, Mirata MA, Holtmann D, Schrader J: Biooxidation of monoterpenes with bacterial monooxygenases. Process Biochem 2011, 46:1885-1899.
  • [14]Bicas JL, Fontanille P, Pastore GM, Larroche C: Characterization of monoterpene biotransformation in two pseudomonads. J Appl Microbiol 2008, 105:1991-2001.
  • [15]Bicas JL, Fontanille P, Pastore GM, Larroche C: A bioprocess for the production of high concentrations of R-(+)-alpha-terpineol from R-(+)-limonene. Process Biochem 2010, 45:481-486.
  • [16]Cadwallader KR, Braddock RJ, Parish ME, Higgins DP: Bioconversion of (+)-limonene by Pseudomonas gladioli. J Food Sci 1989, 54:1241-1245.
  • [17]Savithiry N, Cheong TK, Oriel P: Production of alpha-terpineol from Escherichia coli cells expressing thermostable limonene hydratase. Appl Biochem Biotechnol 1997, 63–65:213-220.
  • [18]Tadasa K: Intermediates in bacterial-degradation pathway of alpha-terpineol. Agric Biol Chem 1977, 41:2095-2096.
  • [19]Harder J, Probian C: Microbial-degradation of monoterpenes in the absence of molecular-oxygen. Appl Environ Microbiol 1995, 61:3804-3808.
  • [20]Foss S, Harder J: Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol 1998, 21:365-373.
  • [21]Foss S, Heyen U, Harder J: Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, alpha-pinene, 2-carene, and alpha-phellandrene) and nitrate. Syst Appl Microbiol 1998, 21:237-244.
  • [22]Heyen U, Harder J: Cometabolic isoterpinolene formation from isolimonene by denitrifying Alcaligenes defragrans. FEMS Microbiol Lett 1998, 169:67-71.
  • [23]Heyen U, Harder J: Geranic acid formation, an initial reaction of anaerobic monoterpene metabolism in denitrifying Alcaligenes defragrans. Appl Environ Microbiol 2000, 66:3004-3009.
  • [24]Brodkorb D, Gottschall M, Marmulla R, Lüddeke F, Harder J: Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes. J Biol Chem 2010, 285:30436-30442.
  • [25]Lüddeke F, Harder J: Enantiospecific (S)-(+)-linalool formation from beta-myrcene by linalool dehydratase-isomerase. Z Naturforsch C 2011, 66:409-412.
  • [26]Lüddeke F, Wulfing A, Timke M, Germer F, Weber J, Dikfidan A, Rahnfeld T, Linder D, Meyerdierks A, Harder J: Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl Environ Microbiol 2012, 78:2128-2136.
  • [27]Lüddeke F, Dikfidan A, Harder J: Physiology of deletion mutants in the anaerobic beta-myrcene degradation pathway in Castellaniella defragrans. BMC Microbiol 2012, 12:192.
  • [28]Eaton RW: Dehydration of the off-flavor chemical 2-methylisoborneol by the R-limonene-degrading bacteria Pseudomonas sp. strain 19-rlim and Sphingomonas sp. strain BIR2-rlima. Biodegradation 2012, 23:253-261.
  • [29]Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011, 9:803-816.
  • [30]Palleroni NJ, Pieper DH, Moore ERB: Microbiology of hydrocarbon-degrading Pseudomonas. In Handbook of Hydrocarbon and Lipid Microbiology. Edited by Kenneth NT. Berlin Heidelberg: Springer; 2010:1787-1798.
  • [31]Larsen RA, Wilson MM, Guss AM, Metcalf WW: Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 2002, 178:193-201.
  • [32]Raisig A, Bartley G, Scolnik P, Sandmann G: Purification in an active state and properties of the 3-step phytoene desaturase from Rhodobacter capsulatus overexpressed in Escherichia coli. J Biochem 1996, 119:559-564.
  • [33]Galushko A, Minz D, Schink B, Widdel F: Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1999, 1:415-420.
  • [34]Speelmans G, Bijlsma A, Eggink G: Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain. Appl Microbiol Biotechnol 1998, 50:538-544.
  • [35]Chang HC, Gage DA, Oriel PJ: Cloning and expression of a limonene degradation pathway from Bacillus stearothermophilus in Escherichia coli. J Food Sci 1995, 60:551-553.
  • [36]Devi JR, Bhattacharyya PK: Fermentation of geraniol, nerol and limonene by a soil pseudomonad, Pseudomonas incognita (linalool strain). Indian J Biochem Biophys 1977, 14:288-291.
  • [37]Metcalf WW, Jiang WH, Daniels LL, Kim SK, Haldimann A, Wanner BL: Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 1996, 35:1-13.
  • [38]Simon R, Priefer U, Puhler A: A broad host range mobilization system for in vivo genetic-engineering - transposon mutagenesis in gram-negative bacteria. Bio Technol 1983, 1:784-791.
  • [39]Schäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A: Small mobilizable multipurpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19 - selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145:69-73.
  • [40]Ezennia EI, Phillips LR, Wolfe TL, Tabibi SE: Analysis of perillic acid in plasma by reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B 1997, 688:354-358.
  • [41]Boström KH, Simu K, Hagström A, Riemann L: Optimization of DNA extraction for quantitative marine bacterioplankton community analysis. Limnol Oceanogr Meth 2004, 2:365-373.
  • [42]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olsen R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75.
  • [43]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16:944-945.
  • [44]Mitra A, Kesarwani AK, Pal D, Nagaraja V: WebGeSTer DB-a transcription terminator database. Nucleic Acids Res 2011, 39:D129-D135.
  • [45]Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007, 57:81-91.
  • [46]Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Tam LT, Buttner K, Buurman G, Scharf C, Venz S, Völker U, Hecker M: A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 2004, 4:2849-2876.
  文献评价指标  
  下载次数:29次 浏览次数:9次