期刊论文详细信息
BMC Genomics
Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques
Giuseppe Legname1  Gabriela Salinas-Riester2  Lennart Opitz2  Dirk Motzkus4  Judith Montag3  Ann-Christin Schmädicke4  Silvia Vanni1  Maura Barbisin1 
[1] Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy;Microarray Core Facility, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany;Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Str. 1, D-30625 Hannover, Germany;Unit of Infection Models, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
关键词: Hemoglobin;    Serpina3;    Biomarker;    RT-qPCR;    Microarray;    Transcriptome;    Neurodegeneration;    Non-human primates;    BSE;    Prion diseases;   
Others  :  1216666
DOI  :  10.1186/1471-2164-15-434
 received in 2014-01-13, accepted in 2014-05-07,  发布年份 2014
PDF
【 摘 要 】

Background

Prion diseases are fatal neurodegenerative disorders whose pathogenesis mechanisms are not fully understood. In this context, the analysis of gene expression alterations occurring in prion-infected animals represents a powerful tool that may contribute to unravel the molecular basis of prion diseases and therefore discover novel potential targets for diagnosis and therapeutics. Here we present the first large-scale transcriptional profiling of brains from BSE-infected cynomolgus macaques, which are an excellent model for human prion disorders.

Results

The study was conducted using the GeneChip® Rhesus Macaque Genome Array and revealed 300 transcripts with expression changes greater than twofold. Among these, the bioinformatics analysis identified 86 genes with known functions, most of which are involved in cellular development, cell death and survival, lipid homeostasis, and acute phase response signaling. RT-qPCR was performed on selected gene transcripts in order to validate the differential expression in infected animals versus controls. The results obtained with the microarray technology were confirmed and a gene signature was identified. In brief, HBB and HBA2 were down-regulated in infected macaques, whereas TTR, APOC1 and SERPINA3 were up-regulated.

Conclusions

Some genes involved in oxygen or lipid transport and in innate immunity were found to be dysregulated in prion infected macaques. These genes are known to be involved in other neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Our results may facilitate the identification of potential disease biomarkers for many neurodegenerative diseases.

【 授权许可】

   
2014 Barbisin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150702000103455.pdf 1291KB PDF download
Figure 5. 13KB Image download
Figure 4. 19KB Image download
Figure 3. 103KB Image download
Figure 2. 63KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Prusiner SB: Prions. Proc Natl Acad Sci U S A 1998, 95(23):13363-13383.
  • [2]Colby DW, Prusiner SB: Prions. Cold Spring Harbor Perspect Biol 2011, 3(1):a006833.
  • [3]Tang Y, Xiang W, Hawkins SA, Kretzschmar HA, Windl O: Transcriptional changes in the brains of cattle orally infected with the bovine spongiform encephalopathy agent precede detection of infectivity. J Virol 2009, 83(1):9464-9473.
  • [4]Filali H, Vidal E, Bolea R, Marquez M, Marco P, Vargas A, Pumarola M, Martin-Burriel I, Badiola JJ: Gene and protein patterns of potential prion-related markers in the central nervous system of clinical and preclinical infected sheep. Vet Res 2013, 44(3):14.
  • [5]Basu U, Almeida LM, Dudas S, Graham CE, Czub S, Moore SS, Guan LL: Gene expression alterations in rocky mountain elk infected with chronic wasting disease. Prion 2012, 6(3):282-301.
  • [6]Basu U, Guan LL, Moore SS: Functional genomics approach for identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr Genomics 2012, 13(5):369-378.
  • [7]Legname G, Nguyen HO, Peretz D, Cohen FE, DeArmond SJ, Prusiner SB: Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 2006, 103(50):19105-19110.
  • [8]Collinge J, Clarke AR: A general model of prion strains and their pathogenicity. Science 2007, 318(5852):930-936.
  • [9]Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone S: Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A 2012, 109(22):8546-8551.
  • [10]Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J, Rees JR, Supattapone S: Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 2012, 109(28):E1938-E1946.
  • [11]Miller MB, Wang DW, Wang F, Noble GP, Ma J, Woods VL Jr, Li S, Supattapone S: Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013, 21(11):2061-2068.
  • [12]Benetti F, Gustincich S, Legname G: Gene expression profiling and therapeutic interventions in neurodegenerative diseases: a comprehensive study on potentiality and limits. Expert Opin Drug Discov 2012, 7(3):245-259.
  • [13]Booth S, Bowman C, Baumgartner R, Sorensen G, Robertson C, Coulthart M, Phillipson C, Somorjai RL: Identification of central nervous system genes involved in the host response to the scrapie agent during preclinical and clinical infection. J Gen Virol 2004, 85(Pt 11):3459-3471.
  • [14]Kim HO, Snyder GP, Blazey TM, Race RE, Chesebro B, Skinner PJ: Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms. Adv Appl Bioinform Chem 2008, 1:29-50.
  • [15]Riemer C, Neidhold S, Burwinkel M, Schwarz A, Schultz J, Kratzschmar J, Monning U, Baier M: Gene expression profiling of scrapie-infected brain tissue. Biochem Biophys Res Commun 2004, 323(2):556-564.
  • [16]Xiang W, Windl O, Wunsch G, Dugas M, Kohlmann A, Dierkes N, Westner IM, Kretzschmar HA: Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J Virol 2004, 78(201):11051-11060.
  • [17]Sorensen G, Medina S, Parchaliuk D, Phillipson C, Robertson C, Booth SA: Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes. BMC Genomics 2008, 9:114. BioMed Central Full Text
  • [18]Skinner PJ, Abbassi H, Chesebro B, Race RE, Reilly C, Haase AT: Gene expression alterations in brains of mice infected with three strains of scrapie. BMC Genomics 2006, 7:114. BioMed Central Full Text
  • [19]Filali H, Martin-Burriel I, Harders F, Varona L, Lyahyai J, Zaragoza P, Pumarola M, Badiola JJ, Bossers A, Bolea R: Gene expression profiling and association with prion-related lesions in the medulla oblongata of symptomatic natural scrapie animals. PLoS One 2011, 6(5):e19909.
  • [20]Hedman C, Lyahyai J, Filali H, Marin B, Serrano C, Monleon E, Moreno B, Zaragoza P, Badiola JJ, Martin-Burriel I, Bolea R: Differential gene expression and apoptosis markers in presymptomatic scrapie affected sheep. Vet Microbiol 2012, 159(1-2):23-32.
  • [21]Filali H, Martin-Burriel I, Harders F, Varona L, Serrano C, Acin C, Badiola JJ, Bossers A, Bolea R: Medulla oblongata transcriptome changes during presymptomatic natural scrapie and their association with prion-related lesions. BMC Genomics 2012, 13:399. BioMed Central Full Text
  • [22]Filali H, Martin-Burriel I, Harders F, Varona L, Hedman C, Mediano DR, Monzon M, Bossers A, Badiola JJ, Bolea R: Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie. BMC Genomics 2014, 15:59. BioMed Central Full Text
  • [23]Almeida LM, Basu U, Khaniya B, Taniguchi M, Williams JL, Moore SS, Guan LL: Gene expression in the medulla following oral infection of cattle with bovine spongiform encephalopathy. J Toxic Environ Health A 2011, 74(2-4):110-126.
  • [24]Khaniya B, Almeida L, Basu U, Taniguchi M, Williams JL, Barreda DR, Moore SS, Guan LL: Microarray analysis of differentially expressed genes from Peyer's patches of cattle orally challenged with bovine spongiform encephalopathy. J Toxic Environ Health A 2009, 72(17-18):1008-1013.
  • [25]Almeida LM, Basu U, Williams JL, Moore SS, Guan LL: Microarray analysis in caudal medulla of cattle orally challenged with bovine spongiform encephalopathy. Genet Mol Res 2011, 10(4):3948-3962.
  • [26]Tang Y, Xiang W, Terry L, Kretzschmar HA, Windl O: Transcriptional analysis implicates endoplasmic reticulum stress in bovine spongiform encephalopathy. PLoS One 2010, 5(12):e14207.
  • [27]Basu U, Almeida L, Olson NE, Meng Y, Williams JL, Moore SS, Guan LL: Transcriptome analysis of the medulla tissue from cattle in response to bovine spongiform encephalopathy using digital gene expression tag profiling. J Toxic Environ Health A 2011, 74(2-4):127-137.
  • [28]Panelli S, Strozzi F, Capoferri R, Barbieri I, Martinelli N, Capucci L, Lombardi G, Williams JL: Analysis of gene expression in white blood cells of cattle orally challenged with bovine amyloidotic spongiform encephalopathy. J Toxic Environ Health A 2011, 74(2-4):96-102.
  • [29]Race B, Meade-White KD, Miller MW, Barbian KD, Rubenstein R, LaFauci G, Cervenakova L, Favara C, Gardner D, Long D, Parnell M, Striebel J, Priola SA, Ward A, Williams ES, Race R, Chesebro B: Susceptibilities of nonhuman primates to chronic wasting disease. Emerg Infect Dis 2009, 15(9):1366-1376.
  • [30]Greenwood AD, Vincendeau M, Schmadicke AC, Montag J, Seifarth W, Motzkus D: Bovine spongiform encephalopathy infection alters endogenous retrovirus expression in distinct brain regions of cynomolgus macaques (Macaca fascicularis). Mol Neurodegener 2011, 6(1):44. BioMed Central Full Text
  • [31]Montag J, Hitt R, Opitz L, Schulz-Schaeffer WJ, Hunsmann G, Motzkus D: Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener 2009, 4:36. BioMed Central Full Text
  • [32]Herzog C, Riviere J, Lescoutra-Etchegaray N, Charbonnier A, Leblanc V, Sales N, Deslys JP, Lasmezas CI: PrPTSE distribution in a primate model of variant, sporadic, and iatrogenic Creutzfeldt-Jakob disease. J Virol 2005, 79(22):14339-14345.
  • [33]Montag J, Schulz-Schaeffer W, Schrod A, Hunsmann G, Motzkus D: Asynchronous onset of clinical disease in BSE-infected Macaques. Emerg Infect Dis 2013, 19(7):1125-1127.
  • [34]Tamguney G, Giles K, Glidden DV, Lessard P, Wille H, Tremblay P, Groth DF, Yehiely F, Korth C, Moore RC, Tatzelt J, Rubinstein E, Boucheix C, Yang X, Stanley P, Lisanti MP, Dwek RA, Rudd PM, Moskovitz J, Epstein CJ, Cruz TD, Kuziel WA, Maeda N, Sap J, Ashe KH, Carlson GA, Tesseur I, Wyss-Coray T, Mucke L, Weisgraber KH, et al.: Genes contributing to prion pathogenesis. J Gen Virol 2008, 89(Pt 7):1777-1788.
  • [35]Lasmézas CI, Comoy E, Hawkins S, Herzog C, Mouthon F, Konold T, Auvré F, Correia E, Lescoutra-Etchegaray N, Salès N, Wells G, Brown P, Deslys J-P: Risk of oral infection with bovine spongiform encephalopathy agent in primates. Lancet 2005, 365(9461):781-783.
  • [36]Holznagel E, Yutzy B, Schulz-Schaeffer W, Kruip C, Hahmann U, Bierke P, Torres JM, Kim YS, Thomzig A, Beekes M, Hunsmann G, Loewer J: Foodborne transmission of bovine spongiform encephalopathy to nonhuman primates. Emerg Infect Dis 2013, 19(5):712-720.
  • [37]Yutzy B, Holznagel E, Coulibaly C, Stuke A, Hahmann U, Deslys JP, Hunsmann G, Lower J: Time-course studies of 14-3-3 protein isoforms in cerebrospinal fluid and brain of primates after oral or intracerebral infection with bovine spongiform encephalopathy agent. J Gen Virol 2007, 88(Pt 22):3469-3478.
  • [38]Cali I, Castellani R, Alshekhlee A, Cohen Y, Blevins J, Yuan J, Langeveld JP, Parchi P, Safar JG, Zou WQ, Gambetti P: Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt-Jakob disease: its effect on the phenotype and prion-type characteristics. Brain 2009, 132(Pt 10):2643-2658.
  • [39]Parchi P, Castellani R, Capellari S, Ghetti B, Young K, Chen SG, Farlow M, Dickson DW, Sima AA, Trojanowski JQ, Petersen RB, Gambetti P: Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 1996, 39(6):767-778.
  • [40]Antonell A, Llado A, Altirriba J, Botta-Orfila T, Balasa M, Fernandez M, Ferrer I, Sanchez-Valle R, Molinuevo JL: A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease. Neurobiol Aging 2013, 34(7):1772-1778.
  • [41]Osada N, Uno Y, Mineta K, Kameoka Y, Takahashi I, Terao K: Ancient genome-wide admixture extends beyond the current hybrid zone between Macaca fascicularis and M. mulatta. Mol Ecol 2010, 19(14):2884-2895.
  • [42]Osada N, Hashimoto K, Kameoka Y, Hirata M, Tanuma R, Uno Y, Inoue I, Hida M, Suzuki Y, Sugano S, Terao K, Kusuda J, Takahashi I: Large-scale analysis of Macaca fascicularis transcripts and inference of genetic divergence between M. fascicularis and M. mulatta. BMC Genomics 2008, 9:90. BioMed Central Full Text
  • [43]Zhang Y, Dufort I, Rheault P, Luu-The V: Characterization of a human 20alpha-hydroxysteroid dehydrogenase. J Mol Endocrinol 2000, 25(2):221-228.
  • [44]Ferrer I, Gomez A, Carmona M, Huesa G, Porta S, Riera-Codina M, Biagioli M, Gustincich S, Aso E: Neuronal hemoglobin is reduced in Alzheimer's disease, argyrophilic grain disease, Parkinson's disease, and dementia with Lewy bodies. J Alzheimers Dis 2011, 23(3):537-550.
  • [45]Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB: Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 2001, 314(5):1209-1225.
  • [46]Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK: Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 2003, 33(1):85-89.
  • [47]Xing G, Zhang L, Russell S, Post R: Reduction of dopamine-related transcription factors Nurr1 and NGFI-B in the prefrontal cortex in schizophrenia and bipolar disorders. Schizophr Res 2006, 84(1):36-56.
  • [48]Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA: ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 2010, 141(6):970-981.
  • [49]Soontornniyomkij V, Risbrough VB, Young JW, Soontornniyomkij B, Jeste DV, Achim CL: Hippocampal calbindin-1 immunoreactivity correlate of recognition memory performance in aged mice. Neurosci Lett 2012, 516(1):161-165.
  • [50]Backman M, Machon O, Van Den Bout CJ, Krauss S: Targeted disruption of mouse Dach1 results in postnatal lethality. Dev Dyn 2003, 226(1):139-144.
  • [51]Liu Q, Yu L, Gao J, Fu Q, Zhang J, Zhang P, Chen J, Zhao S: Cloning, tissue expression pattern and genomic organization of latexin, a human homologue of rat carboxypeptidase A inhibitor. Mol Biol Rep 2000, 27(4):241-246.
  • [52]Silver M, Janousova E, Hua X, Thompson PM, Montana G, Alzheimer's Disease Neuroimaging I: Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression. NeuroImage 2012, 63(3):1681-1694.
  • [53]Guttula SV, Allam A, Gumpeny RS: Analyzing microarray data of Alzheimer's using cluster analysis to identify the biomarker genes. Int J Alzheimers Dis 2012, 2012:649456.
  • [54]Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E: Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 2007, 7:46. BioMed Central Full Text
  • [55]Kamboh MI, Minster RL, Kenney M, Ozturk A, Desai PP, Kammerer CM, DeKosky ST: Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer's disease. Neurobiol Aging 2006, 27(10):1435-1439.
  • [56]Mc Guire C, Beyaert R, van Loo G: Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci 2011, 34(12):619-628.
  • [57]Stevenson TJ, Hahn TP, MacDougall-Shackleton SA, Ball GF: Gonadotropin-releasing hormone plasticity: a comparative perspective. Front Neuroendocrinol 2012, 33(3):287-300.
  • [58]Ishibashi D, Atarashi R, Fuse T, Nakagaki T, Yamaguchi N, Satoh K, Honda K, Nishida N: Protective role of interferon regulatory factor 3-mediated signaling against prion infection. J Virol 2012, 86(9):4947-4955.
  • [59]Lucatelli JF, Barros AC, Silva VK, Machado Fda S, Constantin PC, Dias AA, Hutz MH, de Andrade FM: Genetic influences on Alzheimer's disease: evidence of interactions between the genes APOE, APOC1 and ACE in a sample population from the South of Brazil. Neurochem Res 2011, 36(8):1533-1539.
  • [60]Li X, Buxbaum JN: Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 2011, 6:79. BioMed Central Full Text
  • [61]Noriega NC, Kohama SG, Urbanski HF: Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain. BMC Mol Biol 2010, 11:47. BioMed Central Full Text
  • [62]Kabanova S, Kleinbongard P, Volkmer J, Andree B, Kelm M, Jax TW: Gene expression analysis of human red blood cells. Int J Med Sci 2009, 6(4):156-159.
  • [63]Cosseddu GM, Andreoletti O, Maestrale C, Robert B, Ligios C, Piumi F, Agrimi U, Vaiman D: Gene expression profiling on sheep brain reveals differential transcripts in scrapie-affected/not-affected animals. Brain Res 2007, 1142:217-222.
  • [64]Brown AR, Rebus S, McKimmie CS, Robertson K, Williams A, Fazakerley JK: Gene expression profiling of the preclinical scrapie-infected hippocampus. Biochem Biophys Res Commun 2005, 334(1):86-95.
  • [65]Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Ramsey K, Caselli RJ, Kukull WA, McKeel D, Morris JC, Hulette CM, Schmechel D, Reiman EM, Rogers J, Stephan DA: Altered neuronal gene expression in brain regions differentially affected by Alzheimer's disease: a reference data set. Physiol Genomics 2008, 33(2):240-256.
  • [66]Koechlin E, Hyafil A: Anterior prefrontal function and the limits of human decision-making. Science 2007, 318(5850):594-598.
  • [67]Langevin C, Andreoletti O, Le Dur A, Laude H, Beringue V: Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model. Neurobiol Dis 2011, 41(1):219-225.
  • [68]Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P, Simone R, Vlachouli C, Plessy C, Bertin N, Beltrami A, Kobayashi K, Gallo V, Santoro C, Ferrer I, Rivella S, Beltrami CA, Carninci P, Raviola E, Gustincich S: Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A 2009, 106(36):15454-15459.
  • [69]Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF: Neurons express hemoglobin alpha- and beta-chains in rat and human brains. J Comp Neurol 2009, 515(5):538-547.
  • [70]Broadwater L, Pandit A, Clements R, Azzam S, Vadnal J, Sulak M, Yong VW, Freeman EJ, Gregory RB, McDonough J: Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim Biophys Acta 2011, 1812(5):630-641.
  • [71]Johnson VE, Stewart W, Smith DH: Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer's disease? Nat Rev Neurosci 2010, 11(5):361-370.
  • [72]Wu CW, Liao PC, Yu L, Wang ST, Chen ST, Wu CM, Kuo YM: Hemoglobin promotes Abeta oligomer formation and localizes in neurons and amyloid deposits. Neurobiol Dis 2004, 17(3):367-377.
  • [73]Cudaback E, Li X, Yang Y, Yoo T, Montine KS, Craft S, Montine TJ, Keene CD: Apolipoprotein C-I is an APOE genotype-dependent suppressor of glial activation. J Neuroinflammation 2012, 9:192. BioMed Central Full Text
  • [74]Ki CS, Na DL, Kim DK, Kim HJ, Kim JW: Genetic association of an apolipoprotein C-I (APOC1) gene polymorphism with late-onset Alzheimer's disease. Neurosci Lett 2002, 319(2):75-78.
  • [75]Petit-Turcotte C, Stohl SM, Beffert U, Cohn JS, Aumont N, Tremblay M, Dea D, Yang L, Poirier J, Shachter NS: Apolipoprotein C-I expression in the brain in Alzheimer's disease. Neurobiol Dis 2001, 8(6):953-963.
  • [76]Huang R, Hughes M, Mobley S, Lanham I, Poduslo SE: APOE genotypes in African American female multiple sclerosis patients. Neurosci Lett 2007, 414(1):51-56.
  • [77]Xiang W, Hummel M, Mitteregger G, Pace C, Windl O, Mansmann U, Kretzschmar HA: Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model. J Neurochem 2007, 102(3):834-847.
  • [78]Katsel P, Li C, Haroutunian V: Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer's disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer's disease? Neurochem Res 2007, 32(4-5):845-856.
  • [79]Bach C, Gilch S, Rost R, Greenwood AD, Horsch M, Hajj GN, Brodesser S, Facius A, Schadler S, Sandhoff K, Beckers J, Leib-Mosch C, Schatzl HM, Vorberg I: Prion-induced activation of cholesterogenic gene expression by Srebp2 in neuronal cells. J Biol Chem 2009, 284(45):31260-31269.
  • [80]Gilch S, Bach C, Lutzny G, Vorberg I, Schatzl HM: Inhibition of cholesterol recycling impairs cellular PrP(Sc) propagation. Cell Mol Life Sci 2009, 66(24):3979-3991.
  • [81]Leoni V, Shafaati M, Salomon A, Kivipelto M, Bjorkhem I, Wahlund LO: Are the CSF levels of 24S-hydroxycholesterol a sensitive biomarker for mild cognitive impairment? Neurosci Lett 2006, 397(1-2):83-87.
  • [82]Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB: Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 1995, 129(1):121-132.
  • [83]Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP: Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A 2004, 101(7):2070-2075.
  • [84]Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K, Pappolla MA: Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 2000, 7(4):321-331.
  • [85]Patel NV, Forman BM: Linking lipids, Alzheimer's and LXRs? Nucl Recept Signal 2004, 2:e001.
  • [86]Janciauskiene S, Wright HT: Inflammation, antichymotrypsin, and lipid metabolism: autogenic etiology of Alzheimer's disease. Bioessays 1998, 20(12):1039-1046.
  • [87]Matsubara E, Hirai S, Amari M, Shoji M, Yamaguchi H, Okamoto K, Ishiguro K, Harigaya Y, Wakabayashi K: Alpha 1-antichymotrypsin as a possible biochemical marker for Alzheimer-type dementia. Ann Neurol 1990, 28(4):561-567.
  • [88]Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I: Inflammation and Alzheimer's disease. Neurobiol Aging 2000, 21(3):383-421.
  • [89]Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B, Baxter D, Pitstick R, Young R, Spicer D, Price ND, Hohmann JG, Dearmond SJ, Carlson GA, Hood LE: A systems approach to prion disease. Mol Syst Biol 2009, 5:252.
  • [90]Miele G, Seeger H, Marino D, Eberhard R, Heikenwalder M, Stoeck K, Basagni M, Knight R, Green A, Chianini F, Wuthrich RP, Hock C, Zerr I, Aguzzi A: Urinary alpha1-antichymotrypsin: a biomarker of prion infection. PLoS One 2008, 3(12):e3870.
  • [91]Cray C, Zaias J, Altman NH: Acute phase response in animals: a review. Comp Med 2009, 59(6):517-526.
  • [92]Hanna M: Novel drugs targeting transthyretin amyloidosis. Curr Heart Fail Rep 2014, 11(11):50-57.
  • [93]Cascella R, Conti S, Mannini B, Li X, Buxbaum JN, Tiribilli B, Chiti F, Cecchi C: Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro. Biochim Biophys Acta 2013, 1832(12):2302-2314.
  • [94]Li X, Masliah E, Reixach N, Buxbaum JN: Neuronal production of transthyretin in human and murine Alzheimer's disease: is it protective? J Neurosci 2011, 31(35):12483-12490.
  • [95]Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, Golde T, Masliah E, Roberts AR, Bartfai T: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci U S A 2008, 105(7):2681-2686.
  • [96]McGeer PL, McGeer EG: History of innate immunity in neurodegenerative disorders. Front Pharmacol 2011, 2:77.
  • [97]Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, Lopez-Gonzalez I, Blanco R, Carmona M, Yague J, Nos C, Del Rio JA, Gelpi E, Zerr I, Ferrer I: PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 2013, 7(5):383-393.
  • [98]Prusiner SB: Cell biology. A unifying role for prions in neurodegenerative diseases. Science 2012, 336(6088):1511-1513.
  • [99]Xiang W, Windl O, Westner IM, Neumann M, Zerr I, Lederer RM, Kretzschmar HA: Cerebral gene expression profiles in sporadic Creutzfeldt-Jakob disease. Ann Neurol 2005, 58(2):242-257.
  • [100]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004., 3(1) Article3
  • [101]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [102]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
  • [103]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  • [104]Benjamini Y, Hochberg Y: Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995, 57(1):289-300.
  • [105]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [106]Winer J, Jung CK, Shackel I, Williams PM: Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 1999, 270(1):41-49.
  文献评价指标  
  下载次数:32次 浏览次数:23次