期刊论文详细信息
BMC Genetics
Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs
Øystein Skaala2  Matthew Kent1  Vidar Wennevik2  Francois Besnier2  Cino Pertoldi3  Kevin Alan Glover2 
[1] Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway;Section of Population Genetics and Ecology, Institute of Marine Research, Bergen, Norway;Department of Biosciences, Aarhus University, Ny Munkgade 114, Aarhus 820, Denmark
关键词: Migration;    Fish farming;    ABC;    Simulation;    Escapees;    Environmental impact;    Aquaculture;    Admixture;   
Others  :  1086778
DOI  :  10.1186/1471-2156-14-74
 received in 2013-06-23, accepted in 2013-08-15,  发布年份 2013
PDF
【 摘 要 】

Background

Many native Atlantic salmon populations have been invaded by domesticated escapees for three decades or longer. However, thus far, the cumulative level of gene-flow that has occurred from farmed to wild salmon has not been reported for any native Atlantic salmon population. The aim of the present study was to investigate temporal genetic stability in native populations, and, quantify gene-flow from farmed salmon that caused genetic changes where they were observed. This was achieved by genotyping historical and contemporary samples from 20 populations covering all of Norway with recently identified single nucleotide polymorphism markers that are collectively diagnostic for farmed and wild salmon. These analyses were combined with analysis of farmed salmon and implementation of Approximate Bayesian computation based simulations.

Results

Five of the populations displayed statistically significant temporal genetic changes. All five of these populations became more similar to a pool of farmed fish with time, strongly suggesting introgression of farmed fish as the primary cause. The remaining 15 populations displayed weak or non-significant temporal genetic changes. Estimated introgression of farmed fish ranged from 2-47% per population using approximate Bayesian computation. Thus, some populations exhibited high degrees of farmed salmon introgression while others were more or less unaffected. The observed frequency of escapees in each population was moderately correlated with estimated introgression per population R2 = 0.47 P < 0.001. Genetic isolation by distance existed within the historical and contemporary data sets, however, the among-population level of divergence decreased with time.

Conclusions

This is the first study to quantify cumulative introgression of farmed salmon in any native Atlantic salmon population. The estimations demonstrate that the level of introgression has been population-specific, and that the level of introgression is not solely predicted by the frequency of escapees observed in the population. However, some populations have been strongly admixed with farmed salmon, and these data provide policy makers with unique information to address this situation.

【 授权许可】

   
2013 Glover et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116015303258.pdf 1761KB PDF download
Figure 7. 27KB Image download
Figure 6. 97KB Image download
Figure 5. 46KB Image download
Figure 4. 69KB Image download
Figure 3. 43KB Image download
Figure 2. 77KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Anon: Oppdaterte rømmingstall. 2012. http://www.fiskeridir.no/statistikk/akvakultur/oppdaterte-roemmingstall webcite In Norwegian
  • [2]Milner NJ, Evans R: The incidence of escaped Irish farmed salmon in English and Welsh rivers. Fish Manag Ecol 2003, 10(6):403-406.
  • [3]Walker AM, Beveridge MCM, Crozier WO, Maoileidigh N, Milner N: Monitoring the incidence of escaped farmed Atlantic salmon, Salmo salar L., in rivers and fisheries of the United Kingdom and Ireland: current progress and recommendations for future programmes. ICES J Mar Sci 2006, 63(7):1201-1210.
  • [4]Fiske P, Lund RA, Hansen LP: Relationships between the frequency of farmed Atlantic salmon, Salmo salar L., in wild salmon populations and fish farming activity in Norway, 1989–2004. ICES J Mar Sci 2006, 63(7):1182-1189.
  • [5]Fiske P, Lund RA, Østborg GM, Fløystad L: Rømt oppdrettslaks i sjø- og elvefisket i årene 1989–2000. NINA oppdresgsmelding 2001, 704:1-26. In Norwegian
  • [6]Ståhl G: Genetic population strcuture of Atlantic salmon. In Population genetics and fishery management. Edited by Ryman N, Utter F. Seattle: University of Washington Press; 1987:121-140.
  • [7]Verspoor E, Beardmore JA, Consuegra S, De Leaniz CG, Hindar K, Jordan WC, Koljonen ML, Mahkrov AA, Paaver T, Sanchez JA, et al.: Population structure in the Atlantic salmon: insights from 40 years of research into genetic protein variation. J Fish Biol 2005, 67:3-54.
  • [8]Dionne M, Caron F, Dodson JJ, Bernatchez L: Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 2008, 17(10):2382-2396.
  • [9]Perrier C, Guyomard R, Bagliniere JL, Evanno G: Determinants of hierarchical genetic structure in Atlantic salmon populations: environmental factors vs. anthropogenic influences. Mol Ecol 2011, 20(20):4231-4245.
  • [10]Dillane E, McGinnity P, Coughlan JP, Cross MC, De Eyto E, Kenchington E, Prodohl P, Cross TF: Demographics and landscape features determine intrariver population structure in Atlantic salmon (Salmo salar L.): the case of the River Moy in Ireland. Mol Ecol 2008, 17(22):4786-4800.
  • [11]Garcia De Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, Consuegra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson AF, et al.: A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 2007, 82(2):173-211.
  • [12]Taylor EB: A review of local adaptation in salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 1991, 98(1–3):185-207.
  • [13]Naylor R, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M: Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 2005, 55(5):427-437.
  • [14]Ferguson A, Fleming IA, Hindar K, Skaala Ø, McGinnity P, Cross T, Prodohl P: Farm escapees. In The Atlantic salmon genetics, conservation and management. Edited by Verspoor E, Stradmeyer L, Nielsen JL. Oxford, UK: Blackwell; 2007:357-398.
  • [15]Hindar K, Ryman N, Utter F: Genetic effects of cultured fish on natural fish populations. Can J Fish Aquat Sci 1991, 48(5):945-957.
  • [16]Clifford SL, McGinnity P, Ferguson A: Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Can J Fish Aquat Sci 1998, 55(2):358-363.
  • [17]Clifford SL, McGinnity P, Ferguson A: Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon. J Fish Biol 1998, 52(1):118-127.
  • [18]Crozier WW: Escaped farmed salmon, Salmo salar L., in the Glenarm River, Northern Ireland: genetic status of the wild population 7 years on. Fish Manag Ecol 2000, 7(5):437-446.
  • [19]Crozier WW: Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L) in a Northern Irish river. Aquaculture 1993, 113(1–2):19-29.
  • [20]Bourret V, O’Reilly PT, Carr JW, Berg PR, Bernatchez L: Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 2011, 106(3):500-510.
  • [21]Glover KA, Quintela M, Wennevik V, Besnier F, Sørvik AGE, Skaala O: Three decades of farmed escapees in the wild: a spatio-temporal analysis of population genetic structure throughout Norway. PLoS One 2012, 7(8):e43129.
  • [22]Skaala O, Wennevik V, Glover KA: Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES J Mar Sci 2006, 63(7):1224-1233.
  • [23]Taranger GL, Boxaspen KK, Madhun AS, Svåsand T (Eds): Risk assessment–environmental impacts of Norwegian aquaculture. Norway: Institute of Marine Research; 2011. [Extracts from “Fisken og havet, 3-2010] Printed August 2011
  • [24]Hansen MM, Bekkevold D, Jensen LF, Mensberg KLD, Nielsen EE: Genetic restoration of a stocked brown trout salmo trutta population using microsatellite DNA analysis of historical and contemporary samples. J Appl Ecol 2006, 43(4):669-679.
  • [25]Hansen MM, Mensberg KLD: Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: indigenous trout persist in introgressed populations. Biol Lett 2009, 5(5):656-659.
  • [26]Perrier C, Baglinière JL, Evanno G: Understanding admixture patterns in supplemented populations: a case study combining molecular analyses and temporally explicit simulations in Atlantic salmon. Evol Applications 2012, 6:218-230.
  • [27]Hansen MM: Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol Ecol 2002, 11(6):1003-1015.
  • [28]Besnier F, Glover KA, Skaala O: Investigating genetic change in wild populations: modelling gene flow from farm escapees. Aqua Envi Interactions 2011, 2:75-86.
  • [29]Gjedrem T, Gjoen HM, Gjerde B: Genetic-origin of Norwegian farmed Atlantic Salmon. Aquaculture 1991, 98(1–3):41-50.
  • [30]Skaala O, Hoyheim B, Glover K, Dahle G: Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture 2004, 240(1–4):131-143.
  • [31]Karlsson S, Moen T, Lien S, Glover KA, Hindar K: Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip. Mol Ecol Resour 2011, 11:247-253.
  • [32]Glover KA, Skaala O, Sovik AGE, Helle TA: Genetic differentiation among Atlantic salmon reared in sea-cages reveals a non-random distribution of genetic material from a breeding programme to commercial production. Aquacult Res 2011, 42(9):1323-1331.
  • [33]Beaumont MA, Zhang WY, Balding DJ: Approximate Bayesian computation in population genetics. Genetics 2002, 162(4):2025-2035.
  • [34]Excoffier L, Estoup A, Cornuet JM: Bayesian analysis of an admixture model with mutations and arbitrarily linked markers. Genetics 2005, 169(3):1727-1738.
  • [35]Sousa VC, Fritz M, Beaumont MA, Chikhi L: Approximate bayesian computation without summary statistics: the case of admixture. Genetics 2009, 181(4):1507-1519.
  • [36]Estoup A, Beaumont M, Sennedot F, Moritz C, Cornuet JM: Genetic analysis of complex demographic scenarios: Spatially expanding populations of the cane toad, Bufo marinus. Evolution 2004, 58(9):2021-2036.
  • [37]Lund RA, Hansen LP: Identification of wild and reared Atlantic salmon, Salmo salaar L., using scale characters. Aquac Fish Manag 1991, 22:499-508.
  • [38]Glover KA: Forensic identification of fish farm escapees: the Norwegian experience. Aquacult Envi Interactions 2010, 1:1-10.
  • [39]Glover KA, Hansen MM, Lien S, Als TD, Hoyheim B, Skaala O: A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet 2010., 11(2)
  • [40]Glover KA, Hansen MM, Skaala O: Identifying the source of farmed escaped Atlantic salmon (Salmo salar): Bayesian clustering analysis increases accuracy of assignment. Aquaculture 2009, 290(1–2):37-46.
  • [41]Glover KA, Skilbrei OT, Skaala O: Genetic assignment identifies farm of origin for Atlantic salmon Salmo salar escapees in a Norwegian fjord. ICES J Mar Sci 2008, 65(6):912-920.
  • [42]Dieringer D, Schlotterer C: Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 2003, 3(1):167-169.
  • [43]Weir BS, Cockerham CC: Estimating -statistics for the analysis of population structure. Evolution 1984, 38(6):1358-1370.
  • [44]Peakall R, Smouse PE: GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 2006, 6(1):288-295.
  • [45]Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A: GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 2004, 95(6):536-539.
  • [46]Rannala B, Mountain JL: Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 1997, 94(17):9197-9201.
  • [47]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155(2):945-959.
  • [48]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003, 164(4):1567-1587.
  • [49]Besnier F, Glover KA: ParallelStructure: A R package to distribute parallel runs of the population genetics program structure on multi-core computers. PLoS One 2013, 8(7):e70651.
  • [50]Waples RS, Do C: LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 2008, 8(4):753-756.
  • [51]Jombart T, Devillard S, Balloux F: Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010., 11
  • [52]Anon: Vedleggsrapport merd vurdering av måloppnåelse for de enkelte bestandene. Rapport fra Vitenskapelig råd for Lakseforvaltning nr 2b (In Norwegian) 2010.
  • [53]Diserud OH, Fiske P, Hindar K: Forslag til kategorisering av laksebestander som er påvirket av rømt oppdrettslaks. NINA Rapport 782 32s (In Norwegian) 2012.
  • [54]Gausen D, Moen V: Large-scale escapes of farmed Atlantic salmon (Salmo salar) into Norwegian rivers threaten natural populations. Can J Fish Aquat Sci 1991, 48(3):426-428.
  • [55]Gjøen HM: Genetic composition of the broodstock at AKVAFORSK. Estimates of heterozygosity, effects of strain differences and heterosis. Thesis. Ås: Agricultural University of Norway; 1989:55. (In Norwegian)
  • [56]Kalinowski ST: Genetic polymorphism and mixed-stock fisheries analysis. Can J Fish Aquat Sci 2004, 61(7):1075-1082.
  • [57]Fitzpatrick BM: Estimating ancestry and heterozygosity of hybrids using molecular markers. Bmc Evol Biol 2012., 12(131)
  • [58]Fitzpatrick BM, Johnson JR, Kump KD, Shaffer BH, Smith JJ, Voss RS: Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders. Bmc Evol Biol 2009., 9(176)
  • [59]Glover KA, Ottera H, Olsen RE, Slinde E, Taranger GL, Skaala O: A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 2009, 286(3–4):203-210.
  • [60]Solberg MF, Glover KA, Nilsen F, Skaala O: Does domestication cause changes in growth reaction norms? a study of farmed, wild and hybrid Atlantic salmon families exposed to environmental stress. PLoS One 2013, 8(1):e54469.
  • [61]Gjedrem T: The first family-based breeding program in aquaculture. Rev Aquac 2010, 2(1):2-15.
  • [62]Tavare S, Balding DJ, Griffiths RC, Donnelly P: Inferring coalescence times from DNA sequence data. Genetics 1997, 145(2):505-518.
  • [63]Bekkevold D, Hansen MM, Nielsen EE: Genetic impact of gadoid culture on wild fish populations: predictions, lessons from salmonids, and possibilities for minimizing adverse effects. ICES J Mar Sci 2006, 63(2):198-208.
  • [64]Glover KA, Dahle G, Jorstad KE: Genetic identification of farmed and wild Atlantic cod, Gadus morhua, in coastal Norway. ICES J Mar Sci 2011, 68(5):901-910.
  • [65]Moe H, Dempster T, Sunde LM, Winther U, Fredheim A: Technological solutions and operational measures to prevent escapes of Atlantic cod (Gadus morhua) from sea cages. Aquacult Res 2007, 38(1):91-99.
  • [66]Fleming IA, Hindar K, Mjolnerod IB, Jonsson B, Balstad T, Lamberg A: Lifetime success and interactions of farm salmon invading a native population. Proc Roy Soc Lond B Biol Sci 2000, 267(1452):1517-1523.
  • [67]McGinnity P, Prodohl P, Ferguson K, Hynes R, O’Maoileidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, et al.: Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc Roy Soc Lond B Biol Sci 2003, 270(1532):2443-2450.
  • [68]McGinnity P, Stone C, Taggart JB, Cooke D, Cotter D, Hynes R, McCamley C, Cross T, Ferguson A: Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J Mar Sci 1997, 54(6):998-1008.
  • [69]Skaala Ø, Glover Kevin A, Barlaup Bjørn T, Svåsand T, Besnier F, Hansen Michael M, Borgstrøm R: Performance of farmed, hybrid, and wild Atlantic salmon (Salmo salar) families in a natural river environment. Can J Fish Aquat Sci 2012, 69(12):1994-2006.
  • [70]Waples RS, Punt AE, Cope JM: Integrating genetic data into management of marine resources: how can we do it better? Fish Fish 2008, 9(4):423-449.
  • [71]Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ: Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish 2009, 10(4):361-395.
  • [72]Withler RE, Candy JR, Beacham TD, Miller KM: Forensic DNA analysis of Pacific salmonid samples for species and stock identification. Environ Biol Fishes 2004, 69(1–4):275-285.
  • [73]Primmer CR, Koskinen MT, Piironen J: The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proc Roy Soc Lond B Biol Sci 2000, 267(1453):1699-1704.
  • [74]Glover KA, Haag T, Oien N, Walloe L, Lindblom L, Seliussen BB, Skaug HJ: The Norwegian minke whale DNA register: a database monitoring commercial harvest and trade of whale products. Fish Fish 2012, 13:313-332.
  • [75]Shaklee JB, Beacham TD, Seeb L, White BA: Managing fisheries using genetic data: case studies from four species of Pacific salmon. Fish Res 1999, 43(1–3):45-78.
  • [76]Hindar K, Fleming IA, McGinnity P, Diserud A: Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES J Mar Sci 2006, 63(7):1234-1247.
  文献评价指标  
  下载次数:118次 浏览次数:30次