期刊论文详细信息
BMC Genomics
Disruption of Mycobacterium avium subsp. paratuberculosis-specific genes impairs in vivo fitness
Marcel A Behr2  Alexandre Montpetit1  Louis Kreitmann4  Justin R Pritchard3  Joyce Wang5 
[1] McGill University and Génome Québec Innovation Centre, 740 Dr. Penfield Avenue, Montreal H3A 0G1, QC, Canada;McGill International TB Centre, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada;Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA;Department of Medicine, McGill University, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada;Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
关键词: Mycobacterial pathogenesis;    Horizontal gene transfer;    Transposon insertion sequencing;    M. avium subsp. paratuberculosis;    Mycobacterium avium;   
Others  :  1216757
DOI  :  10.1186/1471-2164-15-415
 received in 2014-01-26, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate intracellular pathogen that infects many ruminant species. The acquisition of foreign genes via horizontal gene transfer has been postulated to contribute to its pathogenesis, as these genetic elements are absent from its putative ancestor, M. avium subsp. hominissuis (MAH), an environmental organism with lesser pathogenicity. In this study, high-throughput sequencing of MAP transposon libraries were analyzed to qualitatively and quantitatively determine the contribution of individual genes to bacterial survival during infection.

Results

Out of 52384 TA dinucleotides present in the MAP K-10 genome, 12607 had a MycoMarT7 transposon in the input pool, interrupting 2443 of the 4350 genes in the MAP genome (56%). Of 96 genes situated in MAP-specific genomic islands, 82 were disrupted in the input pool, indicating that MAP-specific genomic regions are dispensable for in vitro growth (odds ratio = 0.21). Following 5 independent in vivo infections with this pool of mutants, the correlation between output pools was high for 4 of 5 (R = 0.49 to 0.61) enabling us to define genes whose disruption reproducibly reduced bacterial fitness in vivo. At three different thresholds for reduced fitness in vivo, MAP-specific genes were over-represented in the list of predicted essential genes. We also identified additional genes that were severely depleted after infection, and several of them have orthologues that are essential genes in M. tuberculosis.

Conclusions

This work indicates that the genetic elements required for the in vivo survival of MAP represent a combination of conserved mycobacterial virulence genes and MAP-specific genes acquired via horizontal gene transfer. In addition, the in vitro and in vivo essential genes identified in this study may be further characterized to offer a better understanding of MAP pathogenesis, and potentially contribute to the discovery of novel therapeutic and vaccine targets.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150702070820860.pdf 1106KB PDF download
Figure 1. 138KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Chacon O, Bermudez LE, Barletta RG: Johne’s disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu Rev Microbiol 2004, 58:329-363.
  • [2]Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA: Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl Environ Microbiol 2004, 70(5):2989-3004.
  • [3]Johansen TB, Agdestein A, Olsen I, Nilsen SF, Holstad G, Djonne B: Biofilm formation by Mycobacterium avium isolates originating from humans, swine and birds. BMC Microbiol 2009, 9:159. BioMed Central Full Text
  • [4]Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR: Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 2009, 106(38):16393-16399.
  • [5]Castillo-Rodal AI, Mazari-Hiriart M, Lloret-Sanchez LT, Sachman-Ruiz B, Vinuesa P, Lopez-Vidal Y: Potentially pathogenic nontuberculous mycobacteria found in aquatic systems. Analysis from a reclaimed water and water distribution system in Mexico City. Eur J Clin Microbiol Infect Dis 2012, 31(5):683-694.
  • [6]Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405(6784):299-304.
  • [7]Lacher DW, Steinsland H, Blank TE, Donnenberg MS, Whittam TS: Molecular evolution of typical enteropathogenic Escherichia coli: clonal analysis by multilocus sequence typing and virulence gene allelic profiling. J Bacteriol 2007, 189(2):342-350.
  • [8]Tomljenovic-Berube AM, Henriksbo B, Porwollik S, Cooper CA, Tuinema BR, McClelland M, Coombes BK: Mapping and regulation of genes within Salmonella pathogenicity island 12 that contribute to in vivo fitness of Salmonella enterica Serovar Typhimurium. Infect Immun 2013, 81(7):2394-2404.
  • [9]Sasakawa C, Kamata K, Sakai T, Makino S, Yamada M, Okada N, Yoshikawa M: Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. J Bacteriol 1988, 170(6):2480-2484.
  • [10]Hu P, Elliott J, McCready P, Skowronski E, Garnes J, Kobayashi A, Brubaker RR, Garcia E: Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 1998, 180(19):5192-5202.
  • [11]Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW: Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009, 33(2):376-393.
  • [12]Turenne CY, Collins DM, Alexander DC, Behr MA: Mycobacterium avium subsp. paratuberculosis and M. avium subsp. avium are independently evolved pathogenic clones of a much broader group of M. avium organisms. J Bacteriol 2008, 190(7):2479-2487.
  • [13]Alexander DC, Turenne CY, Behr MA: Insertion and deletion events that define the pathogen Mycobacterium avium subsp. paratuberculosis. J Bacteriol 2009, 191(3):1018-1025.
  • [14]Li L, Bannantine JP, Zhang Q, Amonsin A, May BJ, Alt D, Banerji N, Kanjilal S, Kapur V: The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 2005, 102(35):12344-12349.
  • [15]Wynne JW, Seemann T, Bulach DM, Coutts SA, Talaat AM, Michalski WP: Resequencing the Mycobacterium avium subsp. paratuberculosis K10 genome: improved annotation and revised genome sequence. J Bacteriol 2010, 192(23):6319-6320.
  • [16]Veyrier F, Pletzer D, Turenne C, Behr MA: Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 2009, 9:196. BioMed Central Full Text
  • [17]Becq J, Churlaud C, Deschavanne P: A benchmark of parametric methods for horizontal transfers detection. PLoS One 2010, 5(4):e9989.
  • [18]Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, et al.: Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 2013, 45(2):172-179.
  • [19]Sassetti CM, Boyd DH, Rubin EJ: Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 2001, 98(22):12712-12717.
  • [20]Rengarajan J, Bloom BR, Rubin EJ: Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 2005, 102(23):8327-8332.
  • [21]Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM: High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 2011, 7(9):e1002251.
  • [22]Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ: Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 2013, 155(6):1296-1308.
  • [23]Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB: A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 2013, 9(9):e1003582.
  • [24]Barquist L, Langridge GC, Turner DJ, Phan MD, Turner AK, Bateman A, Parkhill J, Wain J, Gardner PP: A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 2013, 41(8):4549-4564.
  • [25]Chao MC, Pritchard JR, Zhang YJ, Rubin EJ, Livny J, Davis BM, Waldor MK: High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res 2013, 41(19):9033-9048.
  • [26]Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, Rubin EJ: Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 2012, 8(9):e1002946.
  • [27]Mendum TA, Newcombe J, Mannan AA, Kierzek AM, McFadden J: Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biol 2011, 12(12):R127. BioMed Central Full Text
  • [28]Cavaignac SM, White SJ, de Lisle GW, Collins DM: Construction and screening of Mycobacterium paratuberculosis insertional mutant libraries. Arch Microbiol 2000, 173(3):229-231.
  • [29]Harris NB, Feng Z, Liu X, Cirillo SL, Cirillo JD, Barletta RG: Development of a transposon mutagenesis system for Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol Lett 1999, 175(1):21-26.
  • [30]Shin SJ, Wu CW, Steinberg H, Talaat AM: Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 2006, 74(7):3825-3833.
  • [31]Alonso-Hearn M, Patel D, Danelishvili L, Meunier-Goddik L, Bermudez LE: The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42. Infect Immun 2008, 76(1):170-178.
  • [32]Lew JM, Kapopoulou A, Jones LM, Cole ST: TubercuList–10 years after. Tuberculosis 2011, 91(1):1-7.
  • [33]Castellanos E, Aranaz A, Gould KA, Linedale R, Stevenson K, Alvarez J, Dominguez L, de Juan L, Hinds J, Bull TJ: Discovery of stable and variable differences in the Mycobacterium avium subsp. paratuberculosis type I, II, and III genomes by pan-genome microarray analysis. Appl Environ Microbiol 2009, 75(3):676-686.
  • [34]Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM: Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 2009, 19(6):1033-1043.
  • [35]Ivanova N, Sikorski J, Jando M, Munk C, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Meincke L, Brettin T, Detter JC, Rohde M, Göker M, Bristow J, et al.: Complete genome sequence of Geodermatophilus obscurus type strain (G-20). Stand Genomic Sci 2010, 2(2):158-167.
  • [36]Benson DR, Silvester WB: Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 1993, 57(2):293-319.
  • [37]Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW: Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 1993, 261(5127):1454-1457.
  • [38]Gioffré A, Infante E, Aguilar D, Santangelo MP, Klepp L, Amadio A, Meikle V, Etchechoury I, Romano MI, Cataldi A, Hernández RP, Bigi F: Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect 2005, 7(3):325-334.
  • [39]Joshi SM, Pandey AK, Capite N, Fortune SM, Rubin EJ, Sassetti CM: Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 2006, 103(31):11760-11765.
  • [40]Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD: A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 2007, 104(6):1947-1952.
  • [41]Casali N, Riley LW: A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 2007, 8:60. BioMed Central Full Text
  • [42]Keown DA, Collings DA, Keenan JI: Uptake and persistence of Mycobacterium avium subsp. paratuberculosis in human monocytes. Infect Immun 2012, 80(11):3768-3775.
  • [43]Bull TJ, Schock A, Sharp JM, Greene M, McKendrick IJ, Sales J, Linedale R, Stevenson K: Genomic variations associated with attenuation in Mycobacterium avium subsp. paratuberculosis vaccine strains. BMC Microbiol 2013, 13:11. BioMed Central Full Text
  • [44]Lamont EA, Xu WW, Sreevatsan S: Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 2013, 14:694. BioMed Central Full Text
  • [45]Janagama HK, Lamont EA, George S, Bannantine JP, Xu WW, Tu ZJ, Wells SJ, Schefers J, Sreevatsan S: Primary transcriptomes of Mycobacterium avium subsp. paratuberculosis reveal proprietary pathways in tissue and macrophages. BMC Genomics 2010, 11:561. BioMed Central Full Text
  • [46]Hatzios SK, Schelle MW, Holsclaw CM, Behrens CR, Botyanszki Z, Lin FL, Carlson BL, Kumar P, Leary JA, Bertozzi CR: PapA3 is an acyltransferase required for polyacyltrehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 2009, 284(19):12745-12751.
  • [47]Paustian ML, Amonsin A, Kapur V, Bannantine JP: Characterization of novel coding sequences specific to Mycobacterium avium subsp. paratuberculosis: implications for diagnosis of Johne’s Disease. J Clin Microbiol 2004, 42(6):2675-2681.
  • [48]Murry JP, Sassetti CM, Lane JM, Xie Z, Rubin EJ: Transposon site hybridization in Mycobacterium tuberculosis. Methods Mol Biol 2008, 416:45-59.
  • [49]Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ: In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 1999, 96(4):1645-1650.
  • [50]Radomski N, Kreitmann L, McIntosh F, Behr MA: The critical role of DNA extraction for detection of mycobacteria in tissues. PLoS One 2013, 8(10):e78749.
  • [51]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
  • [52]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [53]Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotechnol 2011, 29(1):24-26.
  • [54]Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192.
  • [55]Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J: DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009, 25(1):119-120.
  • [56]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(Database issue):D109-D114.
  文献评价指标  
  下载次数:9次 浏览次数:13次