期刊论文详细信息
BMC Medical Research Methodology
Benefits of ICU admission in critically ill patients: Whether instrumental variable methods or propensity scores should be used
Sylvie Chevret3  Didier Payen4  Charles Sprung1  Romain Pirracchio2 
[1] Department of Anesthesiology and Critical Care Medicine, Hadassah University Hospital, Ein-Karem; Kiryat Hadassah, Jerusalem, 91120, Israel;Service d'Anesthésie Réanimation, Hôpital Européen Georges Pompidou, APHP; Université Paris V Descartes, Sorbonne Paris Cité; 20 rue Leblanc, Paris, 75015, France;Département de Biostatistique et Informatique Médicale, Unité INSERM UMR 717, Hôpital Saint Louis, APHP; Université Paris 7 Diderot; 1 Avenue Claude Vellefaux, Paris, 75010, France;Département d'Anesthésie Réanimation SMUR, Hôpital Lariboisière, APHP; Université Paris 7 Diderot; 2 rue Ambroise Paré, Paris, 75010, France
关键词: ICU;    Mortality;    Dichotomous outcome;    Instrumental variables;    Causal inference;   
Others  :  1139986
DOI  :  10.1186/1471-2288-11-132
 received in 2011-04-07, accepted in 2011-09-21,  发布年份 2011
PDF
【 摘 要 】

Background

The assessment of the causal effect of Intensive Care Unit (ICU) admission generally involves usual observational designs and thus requires controlling for confounding variables. Instrumental variable analysis is an econometric technique that allows causal inferences of the effectiveness of some treatments during situations to be made when a randomized trial has not been or cannot be conducted. This technique relies on the existence of one variable or "instrument" that is supposed to achieve similar observations with a different treatment for "arbitrary" reasons, thus inducing substantial variation in the treatment decision with no direct effect on the outcome. The objective of the study was to assess the benefit in terms of hospital mortality of ICU admission in a cohort of patients proposed for ICU admission (ELDICUS cohort).

Methods

Using this cohort of 8,201 patients triaged for ICU (including 6,752 (82.3%) patients admitted), the benefit of ICU admission was evaluated using 3 different approaches: instrumental variables, standard regression and propensity score matched analyses. We further evaluated the results obtained using different instrumental variable methods that have been proposed for dichotomous outcomes.

Results

The physician's main specialization was found to be the best instrument. All instrumental variable models adequately reduced baseline imbalances, but failed to show a significant effect of ICU admission on hospital mortality, with confidence intervals far higher than those obtained in standard or propensity-based analyses.

Conclusions

Instrumental variable methods offer an appealing alternative to handle the selection bias related to nonrandomized designs, especially when the presence of significant unmeasured confounding is suspected. Applied to the ELDICUS database, this analysis failed to show any significant beneficial effect of ICU admission on hospital mortality. This result could be due to the lack of statistical power of these methods.

【 授权许可】

   
2011 Pirracchio et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324035358315.pdf 225KB PDF download
【 参考文献 】
  • [1]Azoulay E, Pochard F, Chevret S, Vinsonneau C, Garrouste M, Cohen Y, Thuong M, Paugam C, Apperre C, De Cagny B, et al.: Compliance with triage to intensive care recommendations. Crit Care Med 2001, 29(11):2132-2136.
  • [2]Frisho-Lima P, Gurman G, Schapira A, Porath A: Rationing critical care -- what happens to patients who are not admitted? Theor Surg 1994, 9(4):208-211.
  • [3]Metcalfe MA, Sloggett A, McPherson K: Mortality among appropriately referred patients refused admission to intensive-care units. Lancet 1997, 350(9070):7-11.
  • [4]Pocock SJ, Elbourne DR: Randomized trials or observational tribulations? N Engl J Med 2000, 342(25):1907-1909.
  • [5]Concato J, Shah N, Horwitz RI: Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med 2000, 342(25):1887-1892.
  • [6]Rosenbaum P, Rubin D: The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70:41-45.
  • [7]Robins JM, Hernan MA, Brumback B: Marginal structural models and causal inference in epidemiology. Epidemiology 2000, 11(5):550-560.
  • [8]Gayat E, Pirracchio R, Resche-Rigon M, Mebazaa A, Mary JY, Porcher R: Propensity scores in intensive care and anaesthesiology literature: a systematic review. Intensive Care Med
  • [9]Judge G, Griffiths W, Hill W, Lee T: The Theory and Pratice of Econometrics. New York. 1980.
  • [10]Newhouse JP, McClellan M: Econometrics in outcomes research: the use of instrumental variables. Annu Rev Public Health 1998, 19:17-34.
  • [11]Greenland S: An introduction To instrumental variables for epidemiologists. Int J Epidemiol 2000, 29(6):1102.
  • [12]Hernan MA, Robins JM: Instruments for causal inference: an epidemiologist's dream? Epidemiology 2006, 17(4):360-372.
  • [13]McClellan M, McNeil BJ, Newhouse JP: Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. Jama 1994, 272(11):859-866.
  • [14]Earle CC, Tsai JS, Gelber RD, Weinstein MC, Neumann PJ, Weeks JC: Effectiveness of chemotherapy for advanced lung cancer in the elderly: instrumental variable and propensity analysis. J Clin Oncol 2001, 19(4):1064-1070.
  • [15]Stukel TA, Fisher ES, Wennberg DE, Alter DA, Gottlieb DJ, Vermeulen MJ: Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. Jama 2007, 297(3):278-285.
  • [16]Iapichino G, Corbella D, Minelli C, Mills GH, Artigas A, Edbooke DL, Pezzi A, Kesecioglu J, Patroniti N, Baras M, et al.: Reasons for refusal of admission to intensive care and impact on mortality. Intensive Care Med 2010, 36(10):1772-1779.
  • [17]Schag CC, Heinrich RL, Ganz PA: Karnofsky performance status revisited: reliability, validity, and guidelines. J Clin Oncol 1984, 2(3):187-193.
  • [18]Teasdale G, Jennett B: Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2(7872):81-84.
  • [19]Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996, 22(7):707-710.
  • [20]Le Gall JR, Lemeshow S, Saulnier F: A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. Jama 1993, 270(24):2957-2963.
  • [21]Austin PC: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 2008, 27(12):2037-2049.
  • [22]Joffe MM, Ten Have TR, Feldman HI, Kimmel SE: Model selection, confounder control, and marginal structural models: review and new applications. The American Statistician 2004, 58:272-279.
  • [23]Martens EP, Pestman WR, de Boer A, Belitser SV, Klungel OH: Instrumental variables: application and limitations. Epidemiology 2006, 17(3):260-267.
  • [24]Brookhart MA, Wang PS, Solomon DH, Schneeweiss S: Instrumental variable analysis of secondary pharmacoepidemiologic data. Epidemiology 2006, 17(4):373-374.
  • [25]Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S: Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships. J Clin Epidemiol 2009, 62(12):1226-1232.
  • [26]Angrist J, Imbens G, Rubin D: Identification of causal effects using instrumental variables. J Am Stat Assoc 1996, 91:444-455.
  • [27]Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S: Instrumental variables II: instrumental variable application-in 25 variations, the physician prescribing preference generally was strong and reduced covariate imbalance. J Clin Epidemiol 2009, 62(12):1233-1241.
  • [28]Vincent JL, Suter P, Bihari D, Bruining H: Organization of intensive care units in Europe: lessons from the EPIC study. Intensive Care Med 1997, 23(11):1181-1184.
  • [29]Bion JF, Ramsay G, Roussos C, Burchardi H: Intensive care training and specialty status in Europe: international comparisons. Task Force on Educational issues of the European Society of Intensive Care Medicine. Intensive Care Med 1998, 24(4):372-377.
  • [30]Garrouste-Orgeas M, Montuclard L, Timsit JF, Misset B, Christias M, Carlet J: Triaging patients to the ICU: a pilot study of factors influencing admission decisions and patient outcomes. Intensive Care Med 2003, 29(5):774-781.
  • [31]Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D: Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006, 34(2):344-353.
  • [32]Bound J, Jaeger D, Baker R: Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association 1995, 90(430):443-450.
  • [33]Foster EM: Instrumental variables for logistic regression: an illustration. Soc Sci Res 1997, 26(4):487-504.
  • [34]Mullahy J: Instrumental variable estimation of count data models: application to models of cigarette smoking behaviour. Review of Economics and Statistics 1997, 79(4):586-593.
  • [35]Windmeijer F, Silva JMCS: Endogeneity in count data models:an application to demand for health care. Journal of Applied Econometrics. Journal of Applied Econometrics 1997, 12(3):281-294.
  • [36]Johnston KM, Gustafson P, Levy AR, Grootendorst P: Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Stat Med 2008, 27(9):1539-1556.
  • [37]Rassen JA, Schneeweiss S, Glynn RJ, Mittleman MA, Brookhart MA: Instrumental variable analysis for estimation of treatment effects with dichotomous outcomes. Am J Epidemiol 2009, 169(3):273-284.
  • [38]Klungel OH, Martens EP, Psaty BM, Grobbee DE, Sullivan SD, Stricker BH, Leufkens HG, De Boer A: Methods to assess intended effects of drug treatment in observational studies are reviewed. J Clin Epidemiol 2004, 57(12):1223-1231.
  • [39]Didelez V, Sheehan N: Mendelian randomization as an instrumental variable approach to causal inference. Statistical Methods in Medical Research 2007, 16:309-330.
  • [40]Greene W: Econometric Analysis. 5th edition. Upper Saddle River, NJ; 2003.
  • [41]Angrist J: Estimations of limited dependent variable models with dummy endogenous regressors: simple strategies for empirical pratice. J Bus Econ Stat 2001, 19(1):2-16.
  • [42]Austin PC: The performance of different propensity score methods for estimating marginal odds ratios. Stat Med 2007, 26(16):3078-3094.
  • [43]Greenland S: Absence of confounding does not correspond to collapsibility of the rate ratio or rate difference. Epidemiology 1996, 7(5):498-501.
  • [44]Schechtman E: Odds ratio, relative risk, absolute risk reduction, and the number needed to treat--which of these should we use? Value Health 2002, 5(5):431-436.
  • [45]Austin PC: The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies. Stat Med 2010, 29(20):2137-2148.
  • [46]Efron B, Tibshirani R: An Introduction to the Bootstrap. Boca Raton, FL 1993.
  • [47]Moses LE: Measuring effects without randomized trials? Options, problems, challenges. Med Care 1995, 33(4 Suppl):AS8-14.
  • [48]Kunz R, Oxman AD: The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials. Bmj 1998, 317(7167):1185-1190.
  • [49]Austin PC: The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. Med Decis Making 2009, 29(6):661-677.
  • [50]Imbens GW, Angrist JD: Identification and estimation of local average treatment effects. Econometrica 1994, 62:467-475.
  • [51]Brookhart MA, Schneeweiss S: Preference-based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results. Int J Biostat 2007, 3(1):14.
  • [52]Brookhart MA, Rassen JA, Schneeweiss S: Instrumental variable methods in comparative safety and effectiveness research. Pharmacoepidemiol Drug Saf 2010, 19(6):537-554.
  • [53]Brooks JM, Fang G: Interpreting treatment-effect estimates with heterogeneity and choice: simulation model results. Clin Ther 2009, 31(4):902-919.
  文献评价指标  
  下载次数:7次 浏览次数:17次