期刊论文详细信息
BMC Immunology
Synthesized OVA323-339MAP octamers mitigate OVA-induced airway inflammation by regulating Foxp3 T regulatory cells
Zhenwei Xia2  Yanjie Zhang1  Wenwei Zhong1  Wen Su1 
[1] Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China;Department of Pediatrics, Ruijin Hospital, Ruijin 2nd Road 197, Shanghai, 200025, China
关键词: Multiple antigen peptide;    Specific immunotherapy;    Allergic airway inflammation;   
Others  :  1077903
DOI  :  10.1186/1471-2172-13-34
 received in 2012-01-19, accepted in 2012-06-27,  发布年份 2012
PDF
【 摘 要 】

Background

Antigen-specific immunotherapy (SIT) has been widely practiced in treating allergic diseases such as asthma. However, this therapy may induce a series of allergic adverse events during treatment. Peptide immunotherapy (PIT) was explored to overcome these disadvantages. We confirmed that multiple antigen peptides (MAPs) do not cause autoimmune responses, which led to the presumption that MAPs intervention could alleviate allergic airway inflammation without inducing adverse effects.

Results

In this study, synthesized OVA323-339MAP octamers were subcutaneously injected into ovalbumin (OVA)-sensitized and -challenged Balb/c mice to observe its effect on allergic airway inflammation, Th2 immune response, and immune regulating function. It was confirmed that OVA sensitization and challenge led to significant peritracheal inflammatory, cell infiltration, and intensive Th2 response. Treatment of OVA323-339MAP octomers in the airway inflammation mice model increased CD4+CD25+Foxp3+ T regulatory (Treg) cells and their regulatory function in peripheral blood, mediastinal draining lymph nodes, and the spleen. Furthermore, OVA323-339MAP increased IL-10 levels in bronchial alveolar lavage fluid (BALF); up-regulated the expression of IL-10, membrane-bound TGF-β1, as well as Foxp3 in lung tissues; and up-regulated programmed death-1 (PD-1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4) on the surface of Treg cells. These results were further correlated with the decreased OVA specific immunoglobulin E (sIgE) level and the infiltration of inflammatory cells such as eosinophils and lymphocytes in BALF. However, OVA323-339 peptide monomers did not show any of the mentioned effects in the same animal model.

Conclusions

Our study indicates that OVA323-339MAP had significant therapeutic effects on mice allergic airway inflammation by regulating the balance of Th1/Th2 response through Treg cells in vivo.

【 授权许可】

   
2012 Su et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141114155321653.pdf 2556KB PDF download
Figure 7. 33KB Image download
Figure 6. 118KB Image download
Figure 5. 144KB Image download
Figure 4. 75KB Image download
Figure 3. 88KB Image download
Figure 2. 33KB Image download
Figure 1. 188KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Larche M: Peptide immunotherapy for allergic diseases. Allergy 2007, 62:325-331.
  • [2]Pipet A, Botturi K, Pinot D, Vervloet D, Magnan A: Allergen-specific immunotherapy in allergic rhinitis and asthma. Mechanisms and proof of efficacy. Respir Med 2009, 103:800-812.
  • [3]Durham SR, Walker SM, Varga EM, Jacobson MR, O'Brien F, Noble W, Till SJ, Hamid QA, Nouri-Aria KT: Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med 1999, 341:468-475.
  • [4]Briner TJ, Kuo MC, Keating KM, Rogers BL, Greenstein JL: Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d I. Proc Natl Acad Sci U S A 1993, 90:7608-7612.
  • [5]Hoyne GF, O'Hehir RE, Wraith DC, Thomas WR, Lamb JR: Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med 1993, 178:1783-1788.
  • [6]Bauer L, Bohle B, Jahn-Schmid B, Wiedermann U, Daser A, Renz H, Kraft D, Ebner C: Modulation of the allergic immune response in BALB/c mice by subcutaneous injection of high doses of the dominant T cell epitope from the major birch pollen allergen Bet v 1. Clin Exp Immunol 1997, 107:536-541.
  • [7]King TP, Lu G, Agosto H: Antibody responses to bee melittin (Api m 4) and hornet antigen 5 (Dol m 5) in mice treated with the dominant T-cell epitope peptides. J Allergy Clin Immunol 1998, 101:397-403.
  • [8]Norman PS, Ohman JL Jr, Long AA, Creticos PS, Gefter MA, Shaked Z, Wood RA, Eggleston PA, Hafner KB, Rao P, et al.: Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med 1996, 154:1623-1628.
  • [9]Pene J, Desroches A, Paradis L, Lebel B, Farce M, Nicodemus CF, Yssel H, Bousquet J: Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral blood T cells of patients allergic to cats. J Allergy Clin Immunol 1998, 102:571-578.
  • [10]Oldfield WL, Kay AB, Larche M: Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J Immunol 2001, 167:1734-1739.
  • [11]Oldfield WL, Larche M, Kay AB: Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised controlled trial. Lancet 2002, 360:47-53.
  • [12]Alexander C, Ying S, Ying S, B Kay A, Larche M: Fel d 1-derived T cell peptide therapy induces recruitment of CD4+ CD25+; CD4+ interferon-gamma + T helper type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects. Clin Exp Allergy : J British Soc Allergy Clin Immunol 2005, 35:52-58.
  • [13]Worm M, Lee HH, Kleine-Tebbe J, Hafner RP, Laidler P, Healey D, Buhot C, Verhoef A, Maillere B, Kay AB, et al.: Development and preliminary clinical evaluation of a peptide immunotherapy vaccine for cat allergy. J Allergy Clin Immunol 2011, 127:89-97. 97 e81-14
  • [14]Alexander C, Tarzi M, Larche M, Kay AB: The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy 2005, 60:1269-1274.
  • [15]Janssen EM, Wauben MH, Jonker EH, Hofman G, Van Eden W, Nijkamp FP, Van Oosterhout AJ: Opposite effects of immunotherapy with ovalbumin and the immunodominant T-cell epitope on airway eosinophilia and hyperresponsiveness in a murine model of allergic asthma. Am J Respir Cell Mol Biol 1999, 21:21-29.
  • [16]Wegmann KW, Wagner CR, Whitham RH, Hinrichs DJ: Synthetic Peptide dendrimers block the development and expression of experimental allergic encephalomyelitis. J Immunol 2008, 181:3301-3309.
  • [17]Mahajan B, Berzofsky JA, Boykins RA, Majam V, Zheng H, Chattopadhyay R, de la Vega P, Moch JK, Haynes JD, Belyakov IM, et al.: Multiple antigen peptide vaccines against Plasmodium falciparum malaria. Infect Immun 2010, 78:4613-4624.
  • [18]Zhao G, Sun S, Du L, Xiao W, Ru Z, Kou Z, Guo Y, Yu H, Jiang S, Lone Y, et al.: An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus. Virol J 2010, 7:151. BioMed Central Full Text
  • [19]Haro I, Perez S, Garcia M, Chan WC, Ercilla G: Liposome entrapment and immunogenic studies of a synthetic lipophilic multiple antigenic peptide bearing VP1 and VP3 domains of the hepatitis A virus: a robust method for vaccine design. FEBS Lett 2003, 540:133-140.
  • [20]Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L Jr, Gerhard W: Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 2003, 21:2616-2626.
  • [21]Franke ED, Sette A, Sacci J Jr, Southwood S, Corradin G, Hoffman SL: A subdominant CD8(+) cytotoxic T lymphocyte (CTL) epitope from the Plasmodium yoelii circumsporozoite protein induces CTLs that eliminate infected hepatocytes from culture. Infect Immun 2000, 68:3403-3411.
  • [22]Kawamura KS, Su RC, Nguyen LT, Elford AR, Ohashi PS, Gariepy J: In vivo generation of cytotoxic T cells from epitopes displayed on peptide-based delivery vehicles. J Immunol 2002, 168:5709-5715.
  • [23]Verhoef A, Alexander C, Kay AB, Larche M: T cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity. PLoS Med 2005, 2:e78.
  • [24]Smith TR, Alexander C, Kay AB, Larche M, Robinson DS: Cat allergen peptide immunotherapy reduces CD4(+) T cell responses to cat allergen but does not alter suppression by CD4(+) CD25(+) T cells: a double-blind placebo-controlled study. Allergy 2004, 59:1097-1101.
  • [25]Xia ZW, Xu LQ, Zhong WW, Wei JJ, Li NL, Shao J, Li YZ, Yu SC, Zhang ZL: Heme Oxygenase-1 Attenuates Ovalbumin-Induced Airway Inflammation by Up-Regulation of Foxp3 T-Regulatory Cells, Interleukin-10, and Membrane-Bound Transforming Growth Factor- 1. Am J Pathol 2007, 171:1904-1914.
  • [26]Xia ZW, Zhong WW, Xu LQ, Sun JL, Shen QX, Wang JG, Shao J, Li YZ, Yu SC: Heme oxygenase-1-mediated CD4 + CD25high regulatory T cells suppress allergic airway inflammation. J Immunol 2006, 177:5936-5945.
  • [27]Robertson JM, Jensen PE, Evavold BD: DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323-339 epitope. J Immunol 2000, 164:4706-4712.
  • [28]Renz H, Bradley K, Larsen GL, McCall C, Gelfand EW: Comparison of the allergenicity of ovalbumin and ovalbumin peptide 323-339. Differential expansion of V beta-expressing T cell populations. J Immunol 1993, 151:7206-7213.
  • [29]Tam JP: Recent advances in multiple antigen peptides. J Immunol Methods 1996, 196:17-32.
  • [30]Rolland J, O’Hehir R: Immunotherapy of allergy: anergy, deletion, and immune deviation. Curr Opin Immunol 1998, 10:640-645.
  • [31]Gardner LM, O'Hehir RE, Rolland JM: High dose allergen stimulation of T cells from house dust mite-allergic subjects induces expansion of IFN-gamma + T Cells, apoptosis of CD4 + IL-4+ T cells and T cell anergy. Int Arch Allergy Immunol 2004, 133:1-13.
  • [32]Antunez C, Mayorga C, Corzo JL, Jurado A, Torres MJ: Two year follow-up of immunological response in mite-allergic children treated with sublingual immunotherapy. Comparison with subcutaneous administration. Pediatr Allergy Immunol: official publication of the Eur Soc Pediatr Allergy Immunol 2008, 19:210-218.
  • [33]Akdis CA, Blesken T, Akdis M, Wuthrich B, Blaser K: Role of interleukin 10 in specific immunotherapy. J Clin Invest 1998, 102:98-106.
  • [34]Jutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O: Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol 2005, 116:608-613.
  • [35]Reisinger J, Horak F, Pauli G, van Hage M, Cromwell O, Konig F, Valenta R, Niederberger V: Allergen-specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity. J Allergy Clin Immunol 2005, 116:347-354.
  • [36]Golden DB, Meyers DA, Kagey-Sobotka A, Valentine MD, Lichtenstein LM: Clinical relevance of the venom-specific immunoglobulin G antibody level during immunotherapy. J Allergy Clin Immunol 1982, 69:489-493.
  • [37]Muller U, Helbling A, Bischof M: Predictive value of venom-specific IgE, IgG and IgG subclass antibodies in patients on immunotherapy with honey bee venom. Allergy 1989, 44:412-418.
  • [38]Taylor A, Akdis M, Joss A, Akkoc T, Wenig R, Colonna M, Daigle I, Flory E, Blaser K, Akdis CA: IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J Allergy Clin Immunol 2007, 120:76-83.
  • [39]Akdis CA, Akdis M: Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol 2009, 123:735-746. quiz 747-738
  • [40]Tarzi M, Klunker S, Texier C, Verhoef A, Stapel SO, Akdis CA, Maillere B, Kay AB, Larche M: Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin Exp Allergy: J British Soc Allergy Clin Immunol 2006, 36:465-474.
  • [41]Campbell JD, Buckland KF, McMillan SJ, Kearley J, Oldfield WL, Stern LJ, Gronlund H, van Hage M, Reynolds CJ, Boyton RJ, et al.: Peptide immunotherapy in allergic asthma generates IL-10-dependent immunological tolerance associated with linked epitope suppression. J Exp Med 2009, 206:1535-1547.
  • [42]Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM: Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003, 198:1875-1886.
  • [43]Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF, Blessing M: Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4 + CD25+ T cells. J Immunol 2004, 173:6526-6531.
  • [44]Ostroukhova M, Seguin-Devaux C, Oriss TB, Dixon-McCarthy B, Yang L, Ameredes BT, Corcoran TE, Ray A: Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest 2004, 114:28-38.
  • [45]Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray P, Ray A: Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest 2006, 116:996-1004.
  • [46]Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000, 192:303-310.
  • [47]Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995, 3:541-547.
  • [48]Radhakrishnan S, Iijima K, Kobayashi T, Rodriguez M, Kita H, Pease LR: Blockade of allergic airway inflammation following systemic treatment with a B7-dendritic cell (PD-L2) cross-linking human antibody. J Immunol 2004, 173:1360-1365.
  • [49]Oflazoglu E, Swart DA, Anders-Bartholo P, Jessup HK, Norment AM, Lawrence WA, Brasel K, Tocker JE, Horan T, Welcher AA, et al.: Paradoxical role of programmed death-1 ligand 2 in Th2 immune responses in vitro and in a mouse asthma model in vivo. Eur J Immunol 2004, 34:3326-3336.
  • [50]Mann-Chandler MN, Kashyap M, Wright HV, Norozian F, Barnstein BO, Gingras S, Parganas E, Ryan JJ: IFN-gamma induces apoptosis in developing mast cells. J Immunol 2005, 175:3000-3005.
  • [51]Kim HK, Guan H, Zu G, Li H, Wu L, Feng X, Elmets C, Fu Y, Xu H: High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals. J Leukoc Biol 2006, 79:686-695.
  • [52]Piconi S, Trabattoni D, Saresella M, Iemoli E, Schenal M, Fusi A, Borelli M, Chen L, Mascheri A, Clerici M: Effects of specific immunotherapy on the B7 family of costimulatory molecules in allergic inflammation. J Immunol 2007, 178:1931-1937.
  • [53]Vargaftig BB, Singer M: Leukotrienes mediate part of Ova-induced lung effects in mice via EGFR. Am J Physiol Lung Cell Mol Physiol 2003, 285:L808-L818.
  • [54]Myou S, Leff AR, Myo S, Boetticher E, Tong J, Meliton AY, Liu J, Munoz NM, Zhu X: Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J Exp Med 2003, 198:1573-1582.
  文献评价指标  
  下载次数:58次 浏览次数:18次