期刊论文详细信息
BMC Genomics
Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.)
Jixiang Wu1  Ping Li3  Jack C McCarty2  Dewayne D Deng2  Johnie N Jenkins2  David D Fang3 
[1] Plant Science Department, South Dakota State University, Brookings, SD 57007, USA;Genetics & Precision Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762, USA;Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA 70124, USA
关键词: Recombinant inbred lines;    Random-mating;    Quantitative trait loci;    Microsatellite markers;    Fiber quality traits;    Cotton;   
Others  :  1217200
DOI  :  10.1186/1471-2164-15-397
 received in 2014-03-07, accepted in 2014-05-19,  发布年份 2014
PDF
【 摘 要 】

Background

Upland cotton (Gossypium hirsutum L.) accounts for about 95% of world cotton production. Improving Upland cotton cultivars has been the focus of world-wide cotton breeding programs. Negative correlation between yield and fiber quality is an obstacle for cotton improvement. Random-mating provides a potential methodology to break this correlation. The suite of fiber quality traits that affect the yarn quality includes the length, strength, maturity, fineness, elongation, uniformity and color. Identification of stable fiber quantitative trait loci (QTL) in Upland cotton is essential in order to improve cotton cultivars with superior quality using marker-assisted selection (MAS) strategy.

Results

Using 11 diverse Upland cotton cultivars as parents, a random-mated recombinant inbred (RI) population consisting of 550 RI lines was developed after 6 cycles of random-mating and 6 generations of self-pollination. The 550 RILs were planted in triplicates for two years in Mississippi State, MS, USA to obtain fiber quality data. After screening 15538 simple sequence repeat (SSR) markers, 2132 were polymorphic among the 11 parents. One thousand five hundred eighty-two markers covering 83% of cotton genome were used to genotype 275 RILs (Set 1). The marker-trait associations were analyzed using the software program TASSEL. At p < 0.01, 131 fiber QTLs and 37 QTL clusters were identified. These QTLs were responsible for the combined phenotypic variance ranging from 62.3% for short fiber content to 82.8% for elongation. The other 275 RILs (Set 2) were analyzed using a subset of 270 SSR markers, and the QTLs were confirmed. Two major QTL clusters were observed on chromosomes 7 and 16. Comparison of these 131 QTLs with the previously published QTLs indicated that 77 were identified before, and 54 appeared novel.

Conclusions

The 11 parents used in this study represent a diverse genetic pool of the US cultivated cotton, and 10 of them were elite commercial cultivars. The fiber QTLs, especially QTL clusters reported herein can be readily implemented in a cotton breeding program to improve fiber quality via MAS strategy. The consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying fiber development.

【 授权许可】

   
2014 Fang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705054957408.pdf 1829KB PDF download
Figure 3. 25KB Image download
Figure 2. 18KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, et al.: Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492(7429):423-427.
  • [2]Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y: Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS One 2013, 8(2):e57220.
  • [3]Wendel JF, Cronn RC: Polyploidy and the evolutionary history of cotton. Adv Agron 2003, 78:139-186.
  • [4]Fryxell PA: A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 1992, 2:108-165.
  • [5]Brubaker CL, Bourland FM, Wendel JF: The origin and domestication of cotton. In Cotton: Origin, history, technology, and production. Edited by Smith CW, Cothren JT. New York: Wiley & Sons; 1999:3-32.
  • [6]Meredith WR: Registration of MD 52ne high fiber quality cotton germplasm and recurrent parent MD 90ne. Crop Sci 2005, 45:806-807.
  • [7]Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang J: Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum x Gossypium barbadense backcross inbred line population. Theor Appl Genet 2013, 126(1):275-287.
  • [8]Meredith MR: Quantitative genetics. In Cotton. Edited by Koh JW, Lewis CF. Madison, WI, USA: Crop Science Sciety of America; 1984:132-147.
  • [9]Humphrey AB, Matzinger DF, Cockerham CC: Effects of random intercrossing in a naturally self-fertilizing species, Nicotiana tabacum L. Crop Sci 1969, 9:495-497.
  • [10]Nordquist PT, Webster OJ, Gardner CO, Ross VW: Registration of three sorghum germplasm random mating populations. Crop Sci 1973, 13:132.
  • [11]Burton JW, Brim CA: Registration of two soybean germplasm populations. Crop Sci 1981, 21:801.
  • [12]Frey KY, Holland JB: Nine cycles of recurrent selection for increased groat-oil content in oat. Crop Sci 1999, 39:1636-1641.
  • [13]Jenkins JN, McCarty JC, Gutierrez OA, Hayes RW, Bowman DT, Watson CE, Jones DC: Registration of RMUP-C5, a random mated population of upland cotton germplasm. J Plant Regist 2008, 2:239-242.
  • [14]Meredith WR, Bridge RR: Breakup of linkage blocks in cotton. Crop Sci 1971, 11:695-697.
  • [15]Miller PA, Rawlings JO: Breakup of linkage blocks through intermating in a cotton breeding population. Crop Sci 1967, 7:199-204.
  • [16]Green CC, Culp TW: Simultaneous improvement of yield, fiber quality, and yarn stregth in Upland cotton. Crop Sci 1990, 30:66-69.
  • [17]Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z, Liu D, Zhang Z: Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 2012, 29(2):335-348.
  • [18]Lacape JM, Gawrysiak G, Cao TV, Viot C, Llewellyn D, Liu S, Jacobs J, Becker D, Vianna Barroso PA, Assunção JH, Palaï O, Georges S, Jean J, Gibanda M: Mapping QTLs for traits related to phenology, morphology and yield components in an inter-specific Gossypium hirsutum × G. barbadense cotton RIL population. Field Crops Res 2013, 144:256-267.
  • [19]Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palai O, Georges S, Giband M, de Assuncao H, Barroso PA, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C: Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC Plant Biol 2010, 10:132. BioMed Central Full Text
  • [20]Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ: QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor Appl Genet 2003, 106(3):384-396.
  • [21]Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH: Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 2007, 176(4):2577-2588.
  • [22]Fang DD, Xiao J, Canci PC, Cantrell RG: A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 2010, 120(5):943-953.
  • [23]Rong J, Pierce GJ, Waghmare VN, Rogers CJ, Desai A, Chee PW, May OL, Gannaway JR, Wendel JF, Wilkins TA, Paterson AH: Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet 2005, 111(6):1137-1146.
  • [24]Said JI, Lin Z, Zhang X, Song M, Zhang J: A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 2013, 14:776. BioMed Central Full Text
  • [25]Chen H, Qian N, Guo W, Song Q, Li B, Deng F, Dong C, Zhang T: Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Theor Appl Genet 2009, 119(4):605-612.
  • [26]Kumar P, Singh R, Lubbers EL, Shen X, Paterson AH, Campbell BT, Jones DC, Chee PW: Mapping and validation of fiber strength quantitative trait loci on chromosome 24 in upland cotton. Crop Sci 2012, 52:1115-1122.
  • [27]Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B: QTL analysis of cotton fiber quality using multiple G. hirsutum × G. barbadense backcross generations. Crop Sci 2005, 45:123-140.
  • [28]Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ: Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 2004, 108(2):280-291.
  • [29]Qin H, Guo W, Zhang YM, Zhang T: QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 2008, 117(6):883-894.
  • [30]Wang B, Guo W, Zhu X, Wu Y, Huang N, Zhang T: QTL mapping of fiber quality in an elite hybrid derived-RIL population of Upland cotton. Euphytica 2006, 152:367-378.
  • [31]Wang B, Guo W, Zhu X, Wu Y, Huang N, Zhang T: QTL mapping of yield and yield components for elite hybrid derived-RILs in Upland cotton. J Genet Genomics 2007, 34(1):35-45.
  • [32]Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T: Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 2012, 124(8):1415-1428.
  • [33]Gore MA, Percy RG, Zhang J, Fang DD, Cantrell RG: Registration of the TM-1/NM24016 cotton recombinant inbred mapping population. J Plant Regist 2012, 6(1):124-127.
  • [34]Ulloa M, Meredith WR: Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 2000, 4:161-170.
  • [35]Zeng L, Meredith WR Jr, Gutierrez OA, Boykin DL: Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor Appl Genet 2009, 119(1):93-103.
  • [36]Fang DD, Hinze LL, Percy RG, Li P, Deng D, Thyssen G: A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica 2013, 191:391-401.
  • [37]Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B: Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol Breed 2007, 19:45-58.
  • [38]Hinze LL, Dever JK, Percy RG: Molecular variation among and within improved cultivars in the US cotton germplasm collection. Crop Sci 2012, 52:222-230.
  • [39]Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A: Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 2009, 136:401-417.
  • [40]Mei H, Zhu X, Zhang T: Favorable QTL alleles for yield and its components identified by association mapping in Chinese Upland cotton cultivars. PLoS One 2013, 8:e82193.
  • [41]Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES: TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23(19):2633-2635.
  • [42]Dice LR: Measures of the amount of ecologic association between species. Ecology 1945, 26:297-302.
  • [43]Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM: A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 2012, 7(9):e45739.
  • [44]Wang Z, Zhang D, Wang X, Tan X, Guo H, Paterson AH: A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L. G3 , GenesGenomesGenetics 2013, 3(10):1759-1767.
  • [45]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155(2):945-959.
  • [46]Gore MA, Fang DD, Poland JA, Zhang J, Percy RG, Cantrell RG, Thyssen G: Linkage map construction and QTL analysis of agronomic and fiber quality traits in an introgressed recombinant inbred population of cotton (Gossypium hirsutum L.). Plant Genome 2014., 7(1) doi:10.3835/plantgenome2013.3807.0023
  • [47]Blenda A, Scheffler J, Scheffler B, Palmer M, Lacape JM, Yu JZ, Jesudurai C, Jung S, Muthukumar S, Yellambalase P, Ficklin S, Staton M, Eshelman R, Ulloa M, Saha S, Burr B, Liu SL, Zhang TZ, Fang DQ, Pepper A, Kumpatla S, Jacobs J, Tomkins J, Cantrell R, Main D: CMD: a Cotton Microsatellite Database resource for Gossypium genomics. BMC Genomics 2006, 7:132. BioMed Central Full Text
  • [48]Brubaker CL, Wendel JF: Re-evaluating the origin of domesticated cotton (Gossypium hirsutum: Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 1994, 81:1309-1326.
  • [49]Iqbal AE, Reddy OUK, El-Zik KM, Pepper AE: A genetic bottleneck in the ’evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 2001, 103:547-554.
  • [50]May OL, Bowman DT, Calhoun DS: Genetic diversity of US upland cotton cultivars released between 1980 and 1990. Crop Sci 1995, 35:1570-1574.
  • [51]Gilbert MK, Turley RB, Kim HJ, Li P, Thyssen G, Tang Y, Delhom CD, Naoumkina M, Fang DD: Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1). BMC Genomics 2013, 14:403. BioMed Central Full Text
  • [52]Cai C, Tong X, Liu F, Lv F, Wang H, Zhang T, Guo W: Discovery and identification of a novel Ligon lintless-like mutant (Lix) similar to the Ligon lintless (Li1) in allotetraploid cotton. Theor Appl Genet 2013, 126(4):963-970.
  • [53]Xu Z, Kohel RJ, Song G, Cho J, Yu J, Yu S, Tomkins J, Yu JZ: An integrated genetic and physical map of homoeologous chromosomes 12 and 26 in Upland cotton (G. hirsutum L.). BMC Genomics 2008, 9:108. BioMed Central Full Text
  • [54]An C, Jenkins JN, Wu J, Guo Y, McCartin JA: Use of fiber and fuzz mutants to detect QTL for yield components, seed and fiber traits of upland cotton. Euphytica 2010, 172:21-34.
  • [55]Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T: Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 2007, 155(3):371-380.
  • [56]Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH: Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 2005, 111(4):764-771.
  • [57]Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH: Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 2005, 111(4):772-781.
  • [58]Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH: Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 2005, 111(4):757-763.
  • [59]Bowman DT, Gutierrez OA, Percy RG, Calhoun DS, May OL: Pedigrees of upland and pima cotton cultivars released between 1970 and 2005. Mississippi State, MS: Mississippi State Univ; 2007. Mississippi Agricultural and Forestry Experimental Station Bulletin # 1155: http://msucares.com/pubs/bulletins/b1155.pdf webcite
  • [60]Gutiérrez OA, Bowman DT, Cole CB, Jenkins JN, McCarty JC, Wu J, Watson CE: Development of random-mated populations using bulked pollen methodology: cotton as a model. J Cotton Sci 2006, 10:175-179.
  • [61]Rohlf FJ: NTSYSpc: Numerical taxonomy and multivariate analysis system, version 2.2. Setauket, NY: Exeter Software; 2010.
  • [62]SAS Institute: The SAS system for Windows. Release 9.3. Cary, NC, USA: SAS Institute; 2012.
  • [63]Kutner MH, Nachtsheim CJ, Neter J, Li W: Applied linear statistical models. 4th edition. Boston, MA: McGraw-Hill; 2004.
  • [64]Gilmour AR, Gogel B, Cullis B, Thompson R, Butler D, Cherry M, Collins D, Dutkowski D, Harding S, Haskard K: ASReml user guide release 3.0. Hemel Hempstead, UK: VSN International Ltd; 2009.
  • [65]McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T: Report on QTL nomenclature. Rice Genet Newslet 1997, 14:11-13.
  文献评价指标  
  下载次数:34次 浏览次数:15次