期刊论文详细信息
BMC Systems Biology
The extended TILAR approach: a novel tool for dynamic modeling of the transcription factor network regulating the adaption to in vitro cultivation of murine hepatocytes
Rolf Gebhardt4  Reinhard Guthke2  Sebastian Zellmer1  Anke Meyer-Baese3  Jörg Linde2  Eugenia Marbach4  Madlen Matz-Soja4  Wolfgang Schmidt-Heck2  Sebastian Vlaic2 
[1] , GermanFederal Institute for Risk Assessment, Max-Dohrn Str. 8-10, D-10589 Berlin, Germany;, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, D-07745 Jena, Germany;Department of Scientific Computing, Florida State University, Florida 32310-4120, Tallahassee, USA;Institute for Biochemistry, Faculty of Medicine, University of Leipzig, Johannesallee 30, D-04103 Leipzig, Germany
关键词: Tgif1 - TGFB-induced factor homeobox 1;    Dbp - D site albumin promoter binding protein;    Atf3 - activating transcription factor 3;    Liver;    Hepatocytes;    Least angle regression;    Linear modeling;    Key regulator identification;    Transcription factor networks;    Dynamic network inference;    Gene regulation;   
Others  :  1143454
DOI  :  10.1186/1752-0509-6-147
 received in 2012-07-31, accepted in 2012-11-12,  发布年份 2012
PDF
【 摘 要 】

Background

Network inference is an important tool to reveal the underlying interactions of biological systems. In the liver, a complex system of transcription factors is active to distribute signals and induce the cellular response following extracellular stimuli. Plenty of information is available about single transcription factors important for the different functions of the liver, but little is known about their causal relations to each other.

Results

Given a DNA microarray time series dataset of collagen monolayers cultured murine hepatocytes, we identified 22 differentially expressed genes for which the corresponding protein is known to exhibit transcription factor activity. We developed the Extended TILAR (ExTILAR) network inference algorithm based on the modeling concept of the previously published TILAR algorithm. Using ExTILAR, we inferred a transcription factor network based on gene expression data which puts these important genes into a functional context. This way, we identified a previously unknown relationship between Tgif1 and Atf3 which we validated experimentally. Beside its known role in metabolic processes, this extends the knowledge about Tgif1 in hepatocytes towards a possible influence of processes such as proliferation and cell cycle. Moreover, two positive (i.e. double negative) regulatory loops were predicted that could give rise to bistable behavior. We further evaluated the performance of ExTILAR by systematic inference of an in silico network.

Conclusions

We present the ExTILAR algorithm, which combines the advantages of the regression based inference algorithm TILAR, like large network sizes processable and low computational costs, with the advantages of dynamic network models based on ordinary differential equation (i.e. in silico knock-down simulations). Like TILAR, ExTILAR makes use of various prior-knowledge types such as transcription factor binding site information and gene interaction knowledge to infer biologically meaningful gene regulatory networks. Therefore, ExTILAR is especially useful when a large number of genes is modeled using a small number of experimental data points.

【 授权许可】

   
2012 Vlaic et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329082105258.pdf 2488KB PDF download
Figure 7. 30KB Image download
Figure 6. 109KB Image download
Figure 5. 92KB Image download
Figure 4. 83KB Image download
Figure 3. 57KB Image download
Figure 2. 77KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Calkhoven CF, Ab G: Multiple steps in the regulation of transcription-factor level and activity. Biochem J 1996, 317(Pt 2):329-342.
  • [2]Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R: Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 2009, 96:86-103. [ http://dx.doi.org/10.1016/j.biosystems.2008.12.004 webcite]
  • [3]Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, Kim J: Reverse engineering of gene regulatory networks. IET Syst Biol 2007, 1(3):149-163.
  • [4]Linde J, Wilson D, Hube B, Guthke R: Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol 2010, 4:148. [ http://dx.doi.org/10.1186/1752-0509-4-148 webcite] BioMed Central Full Text
  • [5]Linde J, Hortschansky P, Fazius E, Brakhage AA, Guthke R, Haas H: Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach. BMC Syst Biol 2012, 6:6. [ http://dx.doi.org/10.1186/1752-0509-6-6 webcite] BioMed Central Full Text
  • [6]Tierney L, Linde J, Müller S, Brunke S, Molina JC, Hube B, Schöck U, Guthke R, Kuchler K: An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Front Microbiol 2012, 3:85. [ http://dx.doi.org/10.3389/fmicb.2012.00085 webcite]
  • [7]Guthke R, Möller U, Hoffmann M, Thies F, Töpfer S: Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 2005, 21(8):1626-1634. [ http://dx.doi.org/10.1093/bioinformatics/bti226 webcite]
  • [8]Toepfer S, Guthke R, Driesch D, Woetzel D, Pfaff M: The NetGenerator algorithm: reconstruction of gene regulatory networks. Lect Notes Bioinf 2007, 4366:119-130. [http://www.cogsys.cs.uni-tuebingen.de/publikationen/ 2006/spieth06models.pdf] webcite
  • [9]Spieth C, Hassis N, Streichert F, Supper J, Speer N, Beyreuther K, Zell A: Comparing Mathematical Models on the Problem of Network Inference. In Genetic and Evolutionary Computation Conference (GECCO 2006), Lecture Notes in Computer Science, Seattle,. USA: Springer; 2006:305-306.
  • [10]Gustafsson M, Hörnquist M, Lundström J, Björkegren J, Tegnér J: Reverse engineering of gene networks with LASSO and nonlinear basis functions. Ann N Y Acad Sci 2009, 1158:265-275. [ http://dx.doi.org/10.1111/j.1749-6632.2008.03764.x webcite]
  • [11]Spieth C, Streichert F, Speer N, Zell A: Inferring Regulatory Systems with Noisy Pathway Information. Proceedings of the German Conference on Bioinformatics (GCB 2005), Volume P-71 of LNI 2005, 193-203.
  • [12]Vilela M, Chou IC, Vinga S, Vasconcelos ATR, Voit EO, Almeida JS: Parameter optimization in S-system models. BMC Syst Biol 2008, 2:35. [ http://dx.doi.org/10.1186/1752-0509-2-35 webcite] BioMed Central Full Text
  • [13]Mjolsness E: On cooperative quasi-equilibrium models of transcriptional regulation. J Bioinform Comput Biol 2007, 5(2B):467-490.
  • [14]Mjolsness E, Mann T, Castano R, Wold B: From coexpression to coregulation: an approach to inferring transcriptional regulation among gene classes from large-scale gene expression data. Advances in Neural Information Processing Systems, Volume 12 2000, 928-934.
  • [15]Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, Lassmann T, Ravasi T, Hasegawa Y, de Hoon MJL, Katayama S, Schroder K, Carninci P, Tomaru Y, Kanamori-Katayama M, Kubosaki A, Akalin A, Ando Y, Arner E, Asada M, Asahara H, Bailey T, Bajic VB, Bauer D, Beckhouse AG, Bertin N, Björkegren J, Brombacher F, Bulger E, FANTOMC, et al.: The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009, 41(5):553-562. [ http://dx.doi.org/10.1038/ng.375 webcite]
  • [16]Tibishirani R: Regression Shrinkage and Selection via the Lasso. J R Statist Soc 1996, 58:267-288. [ http://www.jstor.org/pss/2346178 webcite]
  • [17]Efron B, Hastie T, Johnstone I, Tibshirani R: Least Angle Regression. Ann Stat 2004, 32(2):407-451. [ http://www.jstor.org/stable/3448465 webcite]
  • [18]Hecker M, Goertsches RH, Engelmann R, Thiesen HJ, Guthke R: Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinf 2009, 10:262. [ http://dx.doi.org/10.1186/1471-2105-10-262 webcite] BioMed Central Full Text
  • [19]Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 302(5643):249-255. [ http://dx.doi.org/10.1126/science.1087447 webcite]
  • [20]Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf 2006, 7(Suppl 1):S7. [ http://dx.doi.org/10.1186/1471-2105-7-S1-S7 webcite] BioMed Central Full Text
  • [21]Meyer PE, Kontos K, Lafitte F, Bontempi G: Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol 2007, 2007(1):79879. [ http://dx.doi.org/10.1155/2007/79879 webcite]
  • [22]Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007, 5(1):e8. [ http://dx.doi.org/10.1371/journal.pbio.0050008 webcite]
  • [23]Linde J, Buyko E, Altwasser R, Hahn U, Guthke R: Full-genomic network inference for non-model organisms: A case study for the fungal pathogen Candida albicans. World Acad Sci, Eng Technol 2011, 80:224-228. [ http://www.waset.org/journals/waset/v80/v80-42.pdf webcite]
  • [24]Altwasser R, Linde J, Buyko E, Hahn U, Guthke R: Genome-Wide Scale-Free Network Inference for Candida albicans. Front Microbiol 2012, 3:51. [ http://dx.doi.org/10.3389/fmicb.2012.00051 webcite]
  • [25]Gustafsson M, Hornquist M, Lombardi A: Large-scale reverse engineering by the Lasso. eprint arXiv:q-bio/0403012 2004. [Available at: [ http://arxiv.org/abs/q-bio/0403012v1 webcite].
  • [26]Barabási AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004, 5(2):101-113. [ http://dx.doi.org/10.1038/nrg1272 webcite]
  • [27]Zoppoli P, Morganella S, Ceccarelli M: TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010, 11:154. [ http://dx.doi.org/10.1186/1471-2105-11-154 webcite] BioMed Central Full Text
  • [28]Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsäcker F, Thürmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R: Transcription factors, ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 2010, 52(6):2127-2136. [ http://dx.doi.org/10.1002/hep.23930 webcite]
  • [29]Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005, 33(20):e175. [ http://dx.doi.org/10.1093/nar/gni179 webcite]
  • [30]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264. [ http://dx.doi.org/10.1093/biostatistics/4.2.249 webcite]
  • [31]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15.
  • [32]Affymetrix I: Statistical Algorithms Description Document. Tech. rep., Affymetrix; Santa Clara, CA: 2002. [http://www.affymetrix.com/support/technical/whitepapers.affx] webcite
  • [33]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23(2):257-258. [ http://dx.doi.org/10.1093/bioinformatics/btl567 webcite]
  • [34]Dopazo J, Carazo JM: Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree. J Mol Evol 1997, 44(2):226-233.
  • [35]Herrero J, Valencia A, Dopazo J: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 2001, 17(2):126-136.
  • [36]Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, MGDG: The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 2011, 39(Database issue):D842-D848.
  • [37]Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, Wasserman WW: oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res 2005, 33(10):3154-3164. [ http://dx.doi.org/10.1093/nar/gki624 webcite]
  • [38]Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT, Wasserman WW: oPOSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res 2007, 35(Web Server issue):W245-W252. [ http://dx.doi.org/10.1093/nar/gkm427 webcite]
  • [39]Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 2004, 32(Database issue):D91-D94. [ http://dx.doi.org/10.1093/nar/gkh012 webcite]
  • [40]Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Münch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003, 31:374-378.
  • [41]Nikitin A, Egorov S, Daraselia N, Mazo I: Pathway studio–the analysis and navigation of molecular networks. Bioinformatics 2003, 19(16):2155-2157.
  • [42]Wang B, Chen J, Santiago FS, Janes M, Kavurma MM, Chong BH, Pimanda JE, Khachigian LM: Phosphorylation and acetylation of histone H3 and autoregulation by early growth response 1 mediate interleukin 1beta induction of early growth response 1 transcription. Arterioscler Thromb Vasc Biol 2010, 30(3):536-545. [ http://dx.doi.org/10.1161/ATVBAHA.109.193821 webcite]
  • [43]Thiel G, Cibelli G: Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 2002, 193(3):287-292. [ http://dx.doi.org/10.1002/jcp.10178 webcite]
  • [44]Ramji DP, Foka P: CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002, 365(Pt 3):561-575. [ http://dx.doi.org/10.1042/BJ20020508 webcite]
  • [45]Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ: Impaired energy homeostasis in C/EBP alpha knockout mice. Science 1995, 269(5227):1108-1112.
  • [46]Matsusue K, Gavrilova O, Lambert G, Brewer Jr HB, Ward JM, Inoue Y, LeRoith D, Gonzalez FJ: Hepatic CCAAT/enhancer binding protein alpha mediates induction of lipogenesis and regulation of glucose homeostasis in leptin-deficient mice. Mol Endocrinol 2004, 18(11):2751-2764. [ http://dx.doi.org/10.1210/me.2004-0213 webcite]
  • [47]Inoue Y, Inoue J, Lambert G, Yim SH, Gonzalez FJ: Disruption of hepatic C/EBPalpha results in impaired glucose tolerance and age-dependent hepatosteatosis. J Biol Chem 2004, 279(43):44740-44748. [ http://dx.doi.org/10.1074/jbc.M405177200 webcite]
  • [48]Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J: Bile acids lower triglyceride levels via a pathway involving, FXR, SHP, and SREBP-1c. J Clin Invest 2004, 113(10):1408-1418. [ http://dx.doi.org/10.1172/JCI21025 webcite]
  • [49]Shimano H: Sterol regulatory element-binding protein-1 as a dominant transcription factor for gene regulation of lipogenic enzymes in the liver. Trends Cardiovasc Med 2000, 10(7):275-278.
  • [50]Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, Nair MG, Nair M, Peters JM, Peters JM, Busik JV, Busik J, Olson LK, Jump DB: Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 2006, 47(9):2028-2041. [ http://dx.doi.org/10.1194/jlr.M600177-JLR200 webcite]
  • [51]Ponugoti B, Fang S, Kemper JK: Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c. Mol Endocrinol 2007, 21(11):2698-2712. [ http://dx.doi.org/10.1210/me.2007-0196 webcite]
  • [52]Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS: Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 1997, 99(5):838-845. [ http://dx.doi.org/10.1172/JCI119247 webcite]
  • [53]Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL: Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 1997, 99(5):846-854. [ http://dx.doi.org/10.1172/JCI119248 webcite]
  • [54]Horton JD, Bashmakov Y, Shimomura I, Shimano H: Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 1998, 95(11):5987-5992.
  • [55]Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000, 102(6):731-744.
  • [56]Lambert G, Amar MJA, Guo G, Brewer Jr HB, Gonzalez FJ, Sinal CJ: The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 2003, 278(4):2563-2570. [ http://dx.doi.org/10.1074/jbc.M209525200 webcite]
  • [57]Ma K, Saha PK, Chan L, Moore DD: Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006, 116(4):1102-1109. [ http://dx.doi.org/10.1172/JCI25604 webcite]
  • [58]Duran-Sandoval D, Cariou B, Percevault F, Hennuyer N, Grefhorst A, van Dijk TH, Gonzalez FJ, Fruchart JC, Kuipers F, Staels B: The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem 2005, 280(33):29971-29979. [ http://dx.doi.org/10.1074/jbc.M501931200 webcite]
  • [59]Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA: Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006, 103(4):1006-1011. [ http://dx.doi.org/10.1073/pnas.0506982103 webcite]
  • [60]Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B: Identification of a nuclear receptor for bile acids. Science 1999, 284(5418):1362-1365.
  • [61]Wang H, Chen J, Hollister K, Sowers LC, Forman BM: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999, 3(5):543-553.
  • [62]Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM: Bile acids: natural ligands for an orphan nuclear receptor. Science 1999, 284(5418):1365-1368.
  • [63]Lee FY, de Aguiar Vallim TQ, Chong HK, Zhang Y, Liu Y, Jones SA, Osborne TF, Edwards PA: Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol Endocrinol 2010, 24(8):1626-1636. [ http://dx.doi.org/10.1210/me.2010-0117 webcite]
  • [64]Carlsson P, Mahlapuu M: Forkhead transcription factors: key players in development and metabolism. Dev Biol 2002, 250:1-23.
  • [65]Tomaru Y, Kondo S, Suzuki M, Hayashizaki Y: A comprehensive search for HNF-3alpha-regulated genes in mouse hepatoma cells by 60K cDNA microarray and chromatin immunoprecipitation/PCR analysis. Biochem Biophys Res Commun 2003, 310(2):667-674.
  • [66]Moya M, Benet M, Guzmán C, Tolosa L, García-Monzón C, Pareja E, Castell JV, Jover R: Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver. PLoS One 2012, 7(1):e30014. [ http://dx.doi.org/10.1371/journal.pone.0030014 webcite]
  • [67]Le Lay J, Kaestner KH: The Fox genes in the liver: from organogenesis to functional integration. Physiol Rev 2010, 90:1-22. [ http://dx.doi.org/10.1152/physrev.00018.2009 webcite]
  • [68]Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG: A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 1995, 270(52):31178-31188.
  • [69]Wotton D, Lo RS, Lee S, Massagué J: A Smad transcriptional corepressor. Cell 1999, 97:29-39.
  • [70]Wotton D, Lo RS, Swaby LA, Massagué J: Multiple modes of repression by the Smad transcriptional corepressor TGIF. J Biol Chem 1999, 274(52):37105-37110.
  • [71]Melhuish TA, Chung DD, Bjerke GA, Wotton D: Tgif1 represses apolipoprotein gene expression in liver. J Cell Biochem 2010, 111(2):380-390. [ http://dx.doi.org/10.1002/jcb.22713 webcite]
  • [72]Nishikura K, Murray JM: Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol Cell Biol 1987, 7(2):639-649.
  • [73]Kröger A, Köster M, Schroeder K, Hauser H, Mueller PP: Activities of IRF-1. J Interferon Cytokine Res 2002, 22:5-14. [ http://dx.doi.org/10.1089/107999002753452610 webcite]
  • [74]Sanford DC, DeWille JW: C/EBPdelta is a downstream mediator of IL-6 induced growth inhibition of prostate cancer cells. Prostate 2005, 63(2):143-154. [ http://dx.doi.org/10.1002/pros.20159 webcite]
  • [75]Zhang Y, Sif S, DeWille J: The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. J Cell Biochem 2007, 102(5):1256-1270. [ http://dx.doi.org/10.1002/jcb.21356 webcite]
  • [76]Giangrande PH, Zhu W, Schlisio S, Sun X, Mori S, Gaubatz S, Nevins JR: A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev 2004, 18(23):2941-2951. [ http://dx.doi.org/10.1101/gad.1239304 webcite]
  • [77]Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, Zhu X, Mazzacurati L, Li X, Petrik KL, Fornace AJ, Rajasekaran B, Zhan Q: ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene 2002, 21(49):7488-7496. [ http://dx.doi.org/10.1038/sj.onc.1205896 webcite]
  • [78]Hagiya K, Yasunaga JI, Satou Y, Ohshima K, Matsuoka M: ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells. Retrovirology 2011, 8:19. [ http://dx.doi.org/10.1186/1742-4690-8-19 webcite] BioMed Central Full Text
  • [79]Kang Y, Chen CR, Massagué J: A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003, 11(4):915-926.
  • [80]Shen J, Walsh CA: Targeted disruption of Tgif, the mouse ortholog of a human holoprosencephaly gene, does not result in holoprosencephaly in mice. Mol Cell Biol 2005, 25(9):3639-3647. [ http://dx.doi.org/10.1128/MCB.25.9.3639-3647.2005 webcite]
  • [81]Lavery DJ, Lopez-Molina L, Margueron R, Fleury-Olela F, Conquet F, Schibler U, Bonfils C: Circadian expression of the steroid 15 alpha-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol Cell Biol 1999, 19(10):6488-6499.
  • [82]Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney L, Yang J, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 2004, 5(10):R80+. [ http://dx.doi.org/10.1186/gb-2004-5-10-r80 webcite]
  • [83]Team RDC: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011. http://www.R-project.org/ webcite. [ISBN 3-900051-07-0]
  • [84]Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, Ferrari S, Lancet D, Danieli GA, Bicciato S: Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinformatics 2007, 8:446. [ http://dx.doi.org/10.1186/1471-2105-8-446 webcite] BioMed Central Full Text
  • [85]Gautier L, Cope L, Bolstad BM, Irizarry RA: affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20(3):307-315. PubMed PMID: 14960456
  • [86]Brock G, Pihur V, Datta S, Datta S: clValid: Validation of Clustering Results. 2011. [ http://CRAN.R-project.org/package=clValid webcite]. [R package version 0.6-4].
  • [87]Dunn JC: Well separated clusters and optimal fuzzy-partitions. J Cybernetics 1974, 4:95-104.
  • [88]Rousseeuw P: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 1987, 20:53-65. [ http://dx.doi.org/10.1016/0377-0427(87)90125-7 webcite]
  • [89]Handl J, Knowles J, Kell DB: Computational cluster validation in post-genomic data analysis. Bioinformatics 2005, 21(15):3201-3212. [ http://dx.doi.org/10.1093/bioinformatics/bti517 webcite]
  • [90]Carlson M, Falcon S, Pages H, Li N: org.Mm.eg.db: Genome wide annotation for Mouse.
  • [91]Mallows CL: Some Comments on Cp. Technometrics 1973, 15(4):661-675. [ http://www.jstor.org/stable/1267380 webcite]
  • [92]Gebhardt R, Hengstler JG, Müller D, Glöckner R, Buenning P, Laube B, Schmelzer E, Ullrich M, Utesch D, Hewitt N, Ringel M, Hilz BR, Bader A, Langsch A, Koose T, Burger HJ, Maas J, Oesch F: New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev 2003, 35(2-3):145-213. [ http://dx.doi.org/10.1081/DMR-120023684 webcite]
  • [93]Klingmüller U, Bauer A, Bohl S, Nickel PJ, Breitkopf K, Dooley S, Zellmer S, Kern C, Merfort I, Sparna T, Donauer J, Walz G, Geyer M, Kreutz C, Hermes M, Gütschel F, Hecht A, Walter D, Egger L, Neubert K, Borner C, Brulport M, Schormann W, Sauer C, Baumann F, Preiss R, MacNelly S, Godoy P, Wiercinska E, Ciuclan L, et al.: Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Syst Biol (Stevenage) 2006, 153(6):433-447.
  文献评价指标  
  下载次数:50次 浏览次数:22次