期刊论文详细信息
BMC Microbiology
Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species
Petter Melin1  Jan Dijksterhuis2  Martin Richard van Leeuwen2  Åsa Svanström3 
[1]Present address: Swedish Chemicals Agency, Box 2, SE-172 13 Sundbyberg, Sweden
[2]Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
[3]Uppsala BioCenter, Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, SE-750 07 Uppsala, Sweden
关键词: Targeted gene deletion;    Stress-resistance;    Saccharomyces cerevisiae;    Germination;    Conidia;    Ascomycota;   
Others  :  1141443
DOI  :  10.1186/1471-2180-14-90
 received in 2013-12-23, accepted in 2014-04-08,  发布年份 2014
PDF
【 摘 要 】

Background

The disaccharide trehalose is a major component of fungal spores and is released upon germination. Moreover, the sugar is well known for is protective functions, e.g. against thermal stress and dehydration. The properties and synthesis of trehalose have been well investigated in the bakers’ yeast Saccharomyces cerevisiae. In filamentous fungi, such knowledge is limited, although several gene products have been identified.

Results

Using Aspergillus niger as a model fungus, the aim of this study was to provide an overview of all genes involved in trehalose synthesis. This fungus has three potential trehalose-6-phosphate synthase encoding genes, tpsA-C, and three putative trehalose phosphate phosphatase encoding genes, tppA-C, of which two have not previously been identified. Expression of all six genes was confirmed using real-time PCR, and conserved orthologs could be identified in related Aspergilli. Using a two-hybrid approach, there is a strong indication that four of the proteins physically interact, as has previously been shown in S. cerevisiae. When creating null mutants of all the six genes, three of them, ΔtpsA, ΔtppA and ΔtppB, had lower internal trehalose contents. The only mutant with a pronounced morphological difference was ΔtppA, in which sporulation was severely reduced with abnormal conidiophores. This was also the only mutant with accumulated levels of trehalose-6-phosphate, indicating that the encoded protein is the main phosphatase under normal conditions. Besides ΔtppA, the most studied deletion mutant in this work was ΔtppB. This gene encodes a protein conserved in filamentous Ascomycota. The ΔtppB mutant displayed a low, but not depleted, internal trehalose content, and conidia were more susceptible to thermal stress.

Conclusion

A. niger contains at least 6 genes putatively involved in trehalose synthesis. Gene expressions related to germination have been quantified and deletion mutants characterized: Mutants lacking tpsA, tppA or tppB have reduced internal trehalose contents. Furthermore, tppA, under normal conditions, encodes the functional trehalose-6-phosphate-phosphatase.

【 授权许可】

   
2014 Svanström et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327050941649.pdf 2595KB PDF download
Figure 10. 26KB Image download
Figure 9. 35KB Image download
Figure 8. 16KB Image download
Figure 7. 38KB Image download
Figure 6. 20KB Image download
Figure 5. 94KB Image download
Figure 4. 142KB Image download
Figure 3. 35KB Image download
Figure 2. 105KB Image download
Figure 1. 188KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G: Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 2006, 6:109. BioMed Central Full Text
  • [2]Iordachescu M, Imai R: Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 2008, 50(10):1223-1229.
  • [3]Elbein AD, Pan YT, Pastuszak I, Carroll D: New insights on trehalose: a multifunctional molecule. Glycobiology 2003, 13(4):17R-27R.
  • [4]Thevelein JM: Regulation of trehalose mobilization in fungi. Microbiol Mol Biol Rev 1984, 48(1):42-59.
  • [5]Elbein AD: The metabolism of α, α-trehalose. Adv Carbohydr Chem Biochem 1974, 30:227-256.
  • [6]Gancedo C, Flores CL: The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 2004, 4(4–5):351-359.
  • [7]Crowe JH, Hoekstra FA, Crowe LM: Anhydrobiosis. Annu Rev Physiol 1992, 54:579-599.
  • [8]Wiemken A: Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 1990, 58(3):209-217.
  • [9]Hottiger T, Virgilio C, Hall M, Boller T, Wiemken A: The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Eur J Biochem 1994, 219(1–2):187-193.
  • [10]Cheng L, Moghraby J, Piper PW: Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiol Lett 1999, 170(1):89-95.
  • [11]Fillinger S, Chaveroche M-K, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C: Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 2001, 147(7):1851-1862.
  • [12]Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CMQ, Campoli P, Chabot J, Filler SG, Sheppard DC: Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 2010, 78(7):3007-3018.
  • [13]Uyar EO, Hamamci H, Turkel S: Effect of different stresses on trehalose levels in Rhizopus oryzae. J Basic Microbiol 2010, 50(4):368-372.
  • [14]Doehlemann G, Berndt P, Hahn M: Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiol-Sgm 2006, 152:2625-2634.
  • [15]Jain NK, Roy I: Effect of trehalose on protein structure. Protein Sci 2009, 18(1):24-36.
  • [16]Lins RD, Pereira CS, Hünenberger PH: Trehalose–protein interaction in aqueous solution. Proteins Struct Funct Bioinf 2004, 55(1):177-186.
  • [17]Bell W, Sun WN, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM: Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 1998, 273(50):33311-33319.
  • [18]de Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A: Disruption of Tps2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phopshate phosphatase activity. Eur J Biochem 1993, 212(2):315-323.
  • [19]Londesborough J, Vuorio O: Trehalose-6-phosphate synthase/phosphatase complex from bakers’ yeast: purification of a proteolytically activated form. J Gen Microbiol 1991, 137(2):323-330.
  • [20]d’Enfert C: Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 1997, 21(2):163-172.
  • [21]Foster AJ, Jenkinson JM, Talbot NJ: Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 2003, 22(2):225-235.
  • [22]Puttikamonkul S, Willger SD, Grahl N, Perfect JR, Movahed N, Bothner B, Park S, Paderu P, Perlin DS, Cramer RA Jr: Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol Microbiol 2010, 77(4):891-911.
  • [23]Wolschek MF, Kubicek CP: The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J Biol Chem 1997, 272(5):2729-2735.
  • [24]Thevelein JM, Hohmann S: Trehalose synthase – guard to the gate of glycolysis in yeast. Trends Biochem Sci 1995, 20(1):3-10.
  • [25]Borgia PT, Miao YH, Dodge CL: The orlA gene from Aspergillus nidulans encodes a trehalose-6-phosphate phosphatase necessary for normal growth and chitin synthesis at elevated temperatures. Mol Microbiol 1996, 20(6):1287-1296.
  • [26]Schuster E, Dunn-Coleman N, Frisvald JC, van Dijck PW: On the safety of Aspergillus niger-a review. Appl Microbiol Biotech 2002, 59:426-435.
  • [27]Bos CJ, Debets AJM, Swart K, Huybers A, Kobus G, Slakhorst SM: Genetic-analysis and the construction of master strains for assignment of genes to 6 linkage groups in Aspergillus niger. Curr Genet 1988, 14(5):437-443.
  • [28]Svanström Å, Melin P: Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Res Microbiol 2013, 164(2):91-99.
  • [29]van Leeuwen MR, Krijgsheld P, Bleichrodt R, Menke H, Stam H, Stark J, Wosten HAB, Dijksterhuis J: Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud Mycol 2013, 74:59-70.
  • [30]Plumridge A, Melin P, Stratford M, Novodvorska M, Shunburne L, Dyer PS, Roubos JA, Menke H, Stark J, Stam H, Archer DB: The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp. Fungal Genet Biol 2010, 47(8):683-692.
  • [31]Bohle K, Junglebloud A, Göcke Y, Dalpiaz A, Cordes C, Horn H, Hempel DC: Selection of reference genes for normalisation of specific gene quantification data of Aspergillus niger. J Biotech 2007, 132:353-358.
  • [32]Pfaffl MW: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [33]Meyer V, Arentshorst M, El-Ghezal A, Drews A-C, Kooistra R, van den Hondel CAMJJ, Ram AFJ: Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 2007, 128:770-775.
  • [34]Carvalho N, Arentshorst M, Kwon MJ, Meyer V, Ram AFJ: Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 2010, 87(4):1463-1473.
  • [35]Dudasova Z, Dudas A, Chovanec M: Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 2004, 28:581-601.
  • [36]Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck A, Dijkhuizen L, Driessen AJM, d’Enfert C, Geysens S, Goosen C, Groot GSP: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 2007, 25(2):221-231.
  • [37]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.
  • [38]Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR: The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 2012, 40(D1):D653-D659.
  • [39]Reinders A, Bürckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C: Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 1997, 24(4):687-696.
  • [40]Shinohara ML, Correa A, Bell-Pedersen D, Dunlap JC, Loros JJ: Neurospora Clock-Controlled Gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development. Eukaryot Cell 2002, 1(1):33-43.
  • [41]Jules M, Beltran G, Francois J, Parrou JL: New insights into trehalose metabolism by Saccharomyces cerevisiae:NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol 2008, 74(3):605-614.
  • [42]Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM: Nutrient-induced activation of trehalose in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 1992, 138:2035-2043.
  • [43]Giots F, Donaton MCV, Thevelein JM: Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 2003, 47(4):1163-1181.
  • [44]Sakamoto K, Iwashita K, Yamada O, Kobayashi K, Mizuno A, Akita O, Mikami S, Shimoi H, Gomi K: Aspergillus oryzae atfA controls conidial germination and stress tolerance. Fungal Genet Biol 2009, 46(12):887-897.
  • [45]Novodvorska M, Hayer K, Pullan ST, Wilson R, Blythe MJ, Stam H, Stratford M, Archer DB: Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genomics 2013, 14:246. BioMed Central Full Text
  文献评价指标  
  下载次数:86次 浏览次数:12次