期刊论文详细信息
BMC Cancer
High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis
Inneke Willekens2  Elke Van de Casteele3  Nico Buls2  Frederik Temmermans1  Bart Jansen1  Rudi Deklerck1  Johan de Mey2 
[1] Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
[2] Medische Beeldvorming en Fysische Wetenschappen (BEFY), Vrije Universiteit Brussel (VUB), Brussels, Belgium
[3] Future Health Department, iMinds, Ghent, Belgium
关键词: 3D morphological analysis;    Microcalcifications;    X-ray micro-CT;    Biopsies;    Breast cancer;   
Others  :  859164
DOI  :  10.1186/1471-2407-14-9
 received in 2013-07-24, accepted in 2013-12-18,  发布年份 2014
PDF
【 摘 要 】

Background

Detection of microcalcifications on mammograms indicates the presence of breast lesion, and the shapes of the microcalcifications as seen by conventional mammography correlates with the probability of malignancy. This preliminary study evaluated the 3D shape of breast microcalcifications using micro-computed tomography (micro-CT) and compared the findings with those obtained using anatomopathological analysis.

Methods

The study analyzed breast biopsy samples from 11 women with findings of suspicious microcalcifications on routine mammograms. The samples were imaged using a micro-CT (SkyScan 1076) at a resolution of 35 μm. Images were reconstructed using filtered back-projection and analyzed in 3D using surface rendering. The samples were subsequently analyzed by the pathology service. Reconstructed 3D images were compared with the corresponding histological slices.

Results

Anatomopathological analysis showed that 5 of 11 patients had ductal breast carcinoma in situ. One patient was diagnosed with invasive ductal carcinoma.

Individual object analysis was performed on 597 microcalcifications. Malignant microcalcifications tended to be thinner and to have a smaller volume and surface area, while their surface area-to-volume ratio was greater than that of benign microcalcifications. The structure model index values were the same for malignant and benign microcalcifications.

Conclusions

This is the first study to use micro-CT for quantitative 3D analysis of microcalcifications. This high-resolution imaging technique will be valuable for gaining a greater understanding of the morphologic characteristics of malignant and benign microcalcifications. The presence of many small microcalcifications can be an indication of malignancy. For the larger microcalcifications, 3D parameters confirmed the more irregular shape of malignant microcalcifications.

【 授权许可】

   
2014 Willekens et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724081716596.pdf 622KB PDF download
27KB Image download
44KB Image download
63KB Image download
66KB Image download
【 图 表 】

【 参考文献 】
  • [1]Stewart BW, Kleihues P: World Cancer Report. World Health Organization; 2003.
  • [2]Silverberg E, Lubera J: Cancer statistics 1986. CA 1986, 36:9-25.
  • [3]Salomon A: Beitrage zur Pathologie und Klinik der Mammacarcinome. Arch Klin Chir 1913, 101:573-668.
  • [4]Arodz T, Kurdziel M, Popiela TJ, Sevre EO, Yuen DA: Detection of clustered microcalcifications in small field digital mammography. Comput Methods Programs Biomed 2006, 81:56-65.
  • [5]Gershon-Cohen J, Yiu LS, Berger SM: The diagnostic importance of calcareous patterns in roentgenography of breast cancer. AJR 1962, 88:1117-1125.
  • [6]Lanyi M: Pattern analysis of 5641 microcalcifications in 100 mammary duct carcinomas: polymorphism. Rofo 1983, 139(3):240-248.
  • [7]Bassett LW: Mammographic analysis of calcifications. Radiol Clin North Am 1992, 30(1):93-105.
  • [8]Boone JM, Kwan AL, Yang K, Burkett GW, Lindfors KK, Nelson TR: Computed tomography for imaging the breast. J Mammary Gland Biol Neoplasia 2006, 11:103-111.
  • [9]Sickles EA: Mammographic features of “early” breast cancer. AJR 1984, 143:461-464.
  • [10]Yam M, Brady M, Highnam R, Behrenbruch C, English R, Kita Y: Three-dimensional reconstruction of microcalcification clusters from two mammographic views. IEEE Trans Med Imaging 2001, 20(6):479-489.
  • [11]De Lafontan B, Daures JP, Salicru B, Eynius F, Mihura J, Rouanet P, Lamarque JL, Naja A, Pujol H: Isolated clustered microcalcifiations: diagnostic value of mammography-Series of 400 cases with surgical verification. Radiology 1994, 190:479-483.
  • [12]Skinner MA, Swain M, Simmons R, McCarty KS Jr, Sullivan DC, Iglehart JD: Nonpalpable breast lesions at biopsy: a detailed analysis of radiographic features. Ann Surg 1988, 208(2):203-208.
  • [13]Colbassani HJ, Feller WF, Cigtay OS, Chun B: Mammographic and pathologic correlation of microcalcification in disease of the breast. Surg Gynecol Obstet 1982, 155(5):689-696.
  • [14]Zhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA: An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys 1996, 23:595-601.
  • [15]Veldkamp WJ, Karssemeijer N, Otten JD, Hendriks JH: Automated classification of clustered microcalcifications into malignant and benign types. Med Phys 2000, 27(11):2600-2608.
  • [16]Astley S, Gilbert F: Computer-aided detection in mammography. Clin Radiol 2004, 59:390-399.
  • [17]Qian W, Mao F, Sun X, Zhang Y, Song D, Clarke RA: An improved method of region grouping for microcalcification detection in digital mammograms. Comp Med Imag Graph 2002, 26:361-368.
  • [18]Leichter I, Lederman R, Buchbinder SS, Bamberger P, Novak B, Fields S: Computerized evaluation of mammographic lesions: What diagnostic role does the shape of the individual microcalcifications play compared with the geometry of the cluster? AJR 2004, 182:705-712.
  • [19]Bocchi L, Nori J: Shape analysis of microcalcifications using Radon transform. Med Eng Phys 2007, 29:691-698.
  • [20]Lindfors KK, Boone JM, Nelson TR, Yang K, Kwan AL, Miller DF: Dedicated breast CT: initial experience. Radiology 2008, 246(3):725-733.
  • [21]Yutani K, Shiba E, Kusuoka H, Tatsumi M, Uehara T, Taguchi T, Takai SI, Nishimura T: Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis. J Comput Assist Tomogr 2000, 24:274-280.
  • [22]Flanagan FL, Dehdashti F, Siegel BA: PET in breast cancer. Semin Nucl Med 1998, 28:290-302.
  • [23]Manoharan R, Shafer K, Perelman L, Wu J, Chen K, Deinum G, Fitzmaurice M, Myles J, Crowe J, Dasari RR, Feld MS: Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem Photobiol 1998, 67:15-22.
  • [24]Hagness SC, Taflove A, Bridges JE: Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors. IEEE Trans Biomed Eng 1998, 45:1470-1479.
  • [25]Boone JM, Nelson TR, Lindfors KK, Seibert JA: Dedicated breast CT: radiation dose and image quality evaluation. Radiology 2001, 221:657-667.
  • [26]Liberman L, Evans WP 3rd, Dershaw DD, Hann LE, Deutch BM, Abramson AF, Rosen PP: Radiography of microcalcifications in stereotaxic mammary core biopsy specimens. Radiology 1994, 190:223-225.
  • [27]Nishide H, Kasuga T, Miyachi T: Report on the 89th scientific assembly and annual meeting of the radiological society of North America--micro-focus x-ray CT imaging of breast specimens with microcalcifications. Nippon Hoshasen Gijutsu Gakkai Zasshi 2004, 60(12):1662-1663.
  • [28]Willekens I, Lahoutte T, Buls N, Vanhove C, Deklerck R, Bossuyt A, de Mey J, et al.: Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Mol Imag Biol 2009, 11(2):128-135.
  • [29]Willekens I, Buls N, De Maeseneer M, Lahoutte T, de Mey J: Use of eXIA 160 XL for contrast studies in micro-computed tomography: experimental observations. Mol Imaging 2013, 12(6):349-56.
  • [30]Ritman EL: Molecular imaging in small animals – roles for micro CT. J Cell Biochem 2002, 39:116-124.
  • [31]Willekens I, Buls N, Lahoutte T, Baeyens L, Vanhove C, Caveliers V, Deklerck R, Bossuyt A, de Mey J, et al.: Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. Contrast Media Mol Imaging 2010, 5(4):201-7.
  • [32]Gufler H, Wagner S, Franke FE: The interior structure of breast microcalcifications assessed with micro computed tomography. Acta Radiol 2011, 52(6):592-596.
  • [33]Tang R, Buckley JM, Fernandez L, Soopey S, Aftreth O, Michaelson J, Saksena M, Lei L, Specht M, Gadd M, Yagi Y, Rafferty E, Brachtel E, Smith BL: Micro-computed tomography (Micro-CT): a novel approach for intraoperative breast cancer specimen imaging. Breast Cancer Res Treat 2013, 139(2):311-316.
  • [34]Tang R, Coopey SB, Buckley JM, Aftreth OP, Fernandez LJ, Brachtel EF, Michaelson JS, Gadd MA, Specht MC, Koerner FC, Smith BL: A pilote study evaluating shaved cavity margins with micro-computed tomography: a novel method for predicting lumpectomy margin status intraoperatively. Breast J 2013, 19(5):485-489.
  • [35]Dronckers DJ, Hendriks JH, Holland R, Rosenbuch G: The practice of mammography. Stuttgart: Thieme Publishers; 2002.
  • [36]Waarsing JH, Day JS, Weinans H: An improved segmentation method for in-vivo μCT imaging. J Bone Miner Res 2004, 19(10):1640-1650.
  • [37]Lorensen WE, Cline HE: Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 1987, 21:163-169.
  • [38]Hildebrand T, Rüegsegger P: A new method for the model- independent assessment of thickness in three-dimensional images. J Microsc 1997, 185:67-75.
  • [39]Hildebrand T, Rüegsegger P: Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1997, 1:15-23.
  • [40]Imamura K, Ehara N, Inada Y, Kanemaki Y, Okamoto J, Maeda I, Miyamoto K, Ogata H, Kawamoto H, Nakajima Y, Fukunda M, Umetani K, Uesugi K: Microcalcifications of breast tissue: appearance on synchotron radiation imaging with 6-μm resolution. AJR 2008, 190:W234-W236.
  • [41]Bianchi S, Palli D, Galli M, Arisio B, Cappa A, Dal Forno S, Coggi G, Fiaccavento S, Gagliano E, Magni E, et al.: Reproducibility of histological diagnoses and diagnostic accuracy non-palpable breast lesions. Pathol Res Pract 1994, 190:69-76.
  • [42]Rosselli Del Turco M, Ciatto S, Bravetti P, Pacini P: The significance of mammographic calcifications in early breast cancer detection. Radiol Med (Torino) 1986, 72(1–2):7-12.
  • [43]Tse GM, Tan PH, Pang AL, Tang AP, Cheung HS: Calcification in breast lesions: pathologists’ perspective. J Clin Pathol 2008, 61(2):145-151.
  • [44]Tabar L, Tony Chen HH, Amy Yen MF, Tot T, Tung TH, Chen LS, Chiu YH, Duffy SW, Smith RA: Mammographic tumor features can predict long-term outcomes reliably in women with 1-14-mm invasive breast carcinoma. Cancer 2004, 101(8):1745-1759.
  • [45]Palka I, Ormandi K, Gaal S, Boda K, Kahan Z: Casting-type calcifications on the mammogram suggest a higher probability of early relapse and death among high-risk breast cancer patients. Acta Radiol 2007, 46(8):1178-1183.
  • [46]Castronovo V, Bellahcene A: Evidence that breast cancer associated microcalcifications are mineralized malignant cells. Int J Oncol 1998, 12(2):305-308.
  • [47]Holland R: Ductal carcinoma in situ. Euro Radiol 2000, 10(suppl 2):S327-S330.
  • [48]Egan RL, McSweeney MB, Sewell CW: Intramammary calcifications without an associated mass in benign and malignant diseases. Radiology 1980, 137:1-7.
  • [49]Franceschi D, Crowe J, Zollinger R, Duchesneau R, Schenk R, Stefanek G, Shuck JM: Biopsy of the breast for mammographically detected lesions. Surg Gynecol Obstet 1990, 171(6):449-455.
  文献评价指标  
  下载次数:20次 浏览次数:5次