期刊论文详细信息
BMC Genomics
Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds
Dorian J Garrick3  Jeremy F Taylor1  Robert D Schnabel1  Mahdi Saatchi2 
[1] Division of Animal Sciences, University of Missouri, Columbia 65211, USA;Department of Animal Science, Iowa State University, Ames 50011, USA;Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
关键词: SNP;    QTL;    Pleiotropy;    GWAS;    Cattle;    Candidate gene;   
Others  :  1216649
DOI  :  10.1186/1471-2164-15-442
 received in 2014-01-15, accepted in 2014-05-30,  发布年份 2014
PDF
【 摘 要 】

Background

The availability of high-density SNP assays including the BovineSNP50 (50 K) enables the identification of novel quantitative trait loci (QTL) and improvement of the resolution of the locations of previously mapped QTL. We performed a series of genome-wide association studies (GWAS) using 50 K genotypes scored in 18,274 animals from 10 US beef cattle breeds with observations for twelve body weights, calving ease and carcass traits.

Results

A total of 159 large-effects QTL (defined as 1-Mb genome windows explaining more than 1% of additive genetic variance) were identified. In general, more QTL were identified in analyses with bigger sample sizes. Four large-effect pleiotropic or closely linked QTLs located on BTA6 at 37–42 Mb (primarily at 38 Mb), on BTA7 at 93 Mb, on BTA14 at 23–26 Mb (primarily at 25 Mb) and on BTA20 at 4 Mb were identified in more than one breed. Several breed-specific large-effect pleiotropic or closely linked QTL were also identified. Some identified QTL regions harbor genes known to have large effects on a variety of traits in cattle such as PLAG1 and MSTN and others harbor promising candidate genes including NCAPG, ARRDC3, ERGIC1, SH3PXD2B, HMGA2, MSRB3, LEMD3, TIGAR, SEPT7, and KIRREL3. Gene ontology analysis revealed that genes involved in ossification and in adipose tissue development were over-represented in the identified pleiotropic QTL. Also, the MAPK signaling pathway was identified as a common pathway affected by the genes located near the pleiotropic QTL.

Conclusions

This largest GWAS ever performed in beef cattle, led us to discover several novel across-breed and breed-specific large-effect pleiotropic QTL that cumulatively account for a significant percentage of additive genetic variance (e.g. more than a third of additive genetic variance of birth and mature weights; and calving ease direct in Hereford). These results will improve our understanding of the biology of growth and body composition in cattle.

【 授权许可】

   
2014 Saatchi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701203040990.pdf 798KB PDF download
Figure 2. 91KB Image download
Figure 1. 125KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Andersson L: Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2001, 2:130-138.
  • [2]Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TP, Sonstegard TS, Van Tassell CP: Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 2009, 4:e5350.
  • [3]Platt A, Vilhjálmsson BJ, Nordborg M: Conditions under which genome-wide association studies will be positively misleading. Genetics 2010, 186:1045-1052.
  • [4]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [5]Spencer CC, Su Z, Donnelly P, Marchini J: Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 2009, 5(5):e1000477.
  • [6]Gutiérrez-Gil B, Williams JL, Homer D, Burton D, Haley CS, Wiener P: Search for quantitative trait loci affecting growth and carcass traits in a cross population of beef and dairy cattle. J Anim Sci 2009, 87:24-36.
  • [7]Kneeland J, Li C, Basarab J, Snelling WM, Benkel B, Murdoch B, Hansen C, Moore SS: Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosomes 2, 6, 14, 19, 21, and 23 within one commercial line of Bos taurus. J Anim Sci 2004, 82:3405-3414.
  • [8]Lindholm-Perry AK, Kuehn LA, Oliver WT, Sexten AK, Miles JR, Rempel LA, Cushman RA, Freetly HC: Adipose and Muscle Tissue Gene Expression of Two Genes (NCAPG and LCORL) Located in a Chromosomal Region Associated with Cattle Feed Intake and Gain. PLoS One 2013, 8(11):e80882.
  • [9]Lindholm-Perry AK, Sexten AK, Kuehn LA, Smith TP, King DA, Shackelford SD, Wheeler TL, Ferrell CL, Jenkins TG, Snelling WM, Freetly HC: Association, effects and validation of polymorphisms within the NCAPG - LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genet 2011, 12:103.
  • [10]Setoguchi K, Furuta M, Hirano T, Nagao T, Watanabe T, Sugimoto Y, Takasuga A: Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet 2009, 10:43.
  • [11]Snelling WM, Allan MF, Keele JW, Kuehn LA, McDaneld T, Smith TP, Sonstegard TS, Thallman RM, Bennett GL: Genome-wide association study of growth in crossbred beef cattle. J Anim Sci 2010, 88:837-848.
  • [12]Bongiorni S, Mancini G, Chillemi G, Pariset L, Valentini A: Identification of a short region on chromosome 6 affecting direct calving ease in Piedmontese cattle breed. PLoS ONE 2012, 7:e50137.
  • [13]Olsen HG, Lien S, Gautier M, Nilsen H, Roseth A, Berg PR, Sundsaasen KK, Svendsen M, Meuwissen TH: Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics 2005, 169:275-283.
  • [14]Schrooten C, Bink MC, Bovenhuis H: Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. J Dairy Sci 2004, 87:3550-3560.
  • [15]Zheng X, Ju Z, Wang J, Li Q, Huang J, Zhang A, Zhong J, Wang C: Single nucleotide polymorphisms, haplotypes and combined genotypes of LAP3 gene in bovine and their association with milk production traits. Mol Biol Rep 2011, 38:4053-4061.
  • [16]Daetwyler HD, Schenkel FS, Sargolzaei M, Robinson JA: A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. J Dairy Sci 2008, 91(8):3225-3236.
  • [17]Holmberg M, Andersson-Eklund L: Quantitative trait loci affecting fertility and calving traits in Swedish dairy cattle. J Dairy Sci 2006, 89(9):3664-3671.
  • [18]Maltecca C, Weigel KA, Khatib H, Cowan M, Bagnato A: Whole-genome scan for quantitative trait loci associated with birth weight, gestation length and passive immune transfer in a Holstein x Jersey crossbred population. Anim Genet 2009, 40(1):27-34.
  • [19]Snelling WM, Allan MF, Keele JW, Kuehn LA, Thallman RM, Bennett GL, Ferrell CL, Jenkins TG, Freetly HC, Nielsen MK, Rolfe KM: Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle. J Anim Sci 2011, 89:1731-1741.
  • [20]Weikard R, Altmaier E, Suhre K, Weinberger KM, Hammon HM, Albrecht E, Setoguchi K, Takasuga A, Kühn C: Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition. Physiol Genomics 2010, 42A:79-88.
  • [21]Pryce JE, Hayes BJ, Bolormaa S, Goddard ME: Polymorphic regions affecting human height also control stature in cattle. Genetics 2011, 187:981-984.
  • [22]Eberlein A, Takasuga A, Setoguchi K, Pfuhl R, Flisikowski K, Fries R, Klopp N, Fürbass R, Weikard R, Kühn C: Dissection of genetic factors modulating fetal growth in cattle indicates a substantial role of the non-SMC Condensin I complex, subunit G (NCAPG) gene. Genetics 2009, 183:951-964.
  • [23]Alexander LJ, MacNeil MD, Geary TW, Snelling WM, Rule DC, Scanga JA: Quantitative trait loci with additive effects on palatability and fatty acid composition of meat in a Wagyu–Limousin F2 population. Anim Genet 2007, 38:506-513.
  • [24]Saatchi M, Garrick DJ: Tait Jr RG, Mayes MS, Drewnoski M, Schoonmaker J, Diaz C, Beitz DC. Reecy JM: Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattle. BMC Genomics 2013, 14:730.
  • [25]Patwari P, Emilsson V, Schadt EE, Chutkow WA, Lee S, Marsili A, Zhang Y, Dobrin R, Cohen DE, Larsen PR, Zavacki AM, Fong LG, Young SG, Lee RT: The arrestin domain containing 3 protein regulates body mass and energy expenditure. Cell Metab 2011, 14:671-683.
  • [26]Patwari P, Lee RT: An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab 2012, 23:216-222.
  • [27]Mersmann HJ: Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci 1998, 76:160-172.
  • [28]Beermann DH: Beta-Adrenergic receptor agonist modulation of skeletal muscle growth. J Anim Sci 2002, 80:E18-E23.
  • [29]Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ, Georges M, Coppieters W: Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 2011, 43:405-413.
  • [30]Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, Sugimoto Y, Takasuga A: Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet 2012, 13:40.
  • [31]Littlejohn M, Grala T, Sanders K, Walker C, Waghorn G, Macdonald K, Coppieters W, Georges M, Spelman R, Hillerton E, Davis S, Snell R: Genetic variation in PLAG1 associates with early life body weight and peripubertal weight and growth in Bos taurus. Anim Genet 2012, 43:591-594.
  • [32]Utsunomiya YT, Carmo AS, Carvalheiro R, Neves HH, Matos MC, Zavarez LB, Pérez O'Brien AM, Sölkner J, McEwan JC, Cole JB, Van Tassell CP, Schenkel FS, da Silva MV, Porto Neto LR, Sonstegard TS, Garcia JF: Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet 2013, 14:52.
  • [33]Breuza L, Halbeisen R, Jenö P, Otte S, Barlowe C, Hong W, Hauri HP: Proteomics of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies ERGIC-32, a new cycling protein that interacts with human Erv46. J Biol Chem 2004, 279:47242-47253.
  • [34]Mao M, Thedens DR, Chang B, Harris BS, Zheng QY, Johnson KR, Donahue LR, Anderson MG: The podosomal-adaptor protein SH3PXD2B is essential for normal postnatal development. Mamm Genome 2009, 20:462-475.
  • [35]Iqbal Z, Cejudo-Martin P, de Brouwer A, van der Zwaag B, Ruiz-Lozano P, Scimia MC, Lindsey JD, Weinreb R, Albrecht B, Megarbane A, Alanay Y, Ben-Neriah Z, Amenduni M, Artuso R, Veltman JA, van Beusekom E, Oudakker A, Millán JL, Hennekam R, Hamel B, Courtneidge SA, van Bokhoven H: Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar syndrome. Am J Hum Genet 2010, 86:254-261.
  • [36]Lányi Á, Baráth M, Péterfi Z, Bogel G, Orient A, Simon T, Petrovszki E, Kis-Tóth K, Sirokmány G, Rajnavölgyi É, Terhorst C, Buday L, Geiszt M: The homolog of the five SH3-domain protein (HOFI/SH3PXD2B) regulates lamellipodia formation and cell spreading. PLoS ONE 2011, 6:e23653.
  • [37]Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997, 17:71-74.
  • [38]Bellinge RH, Liberles DA, Iaschi SP, O'brien PA, Tay GK: Myostatin and its implications on animal breeding: a review. Anim Genet 2005, 36(1):1-6.
  • [39]Alexander LJ, Kuehn LA, Smith TP, Matukumalli LK, Mote B, Koltes JE, Reecy J, Geary TW, Rule DC, MacNeil MD: A Limousin specific myostatin allele affects longissimus muscle area and fatty acid profiles in a Wagyu-Limousin F 2 population. J Anim Sci 2009, 87:1576-1581.
  • [40]Cleynen I, van de Ven WJ: The HMGA proteins: a myriad of functions (Review). Int J Oncol 2008, 32:289-305.
  • [41]Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR, Elliott KS, Hackett R, Guiducci C, Shields B, Zeggini E, Lango H, Lyssenko V, Timpson NJ, Burtt NP, Rayner NW, Saxena R, Ardlie K, Tobias JH, Ness AR, Ring SM, Palmer CN, Morris AD, Peltonen L, Salomaa V: Diabetes Genet Initiative, Wellcome Trust Case Control Consortium, Davey Smith G, Groop LC, Hattersley AT, McCarthy MI, et al.: A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet 2007, 39:1245-1250.
  • [42]Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao K, Brisbin A, Parker HG, VonHoldt BM, Cargill M, Auton A, Reynolds A, Elkahloun AG, Castelhano M, Mosher DS, Sutter NB, Johnson GS, Novembre J, Hubisz MJ, Siepel A, Wayne RK, Bustamante CD, Ostrander EA: A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 2010, 8:e1000451.
  • [43]Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, Chandler AM, Loredo AI, Bellone RR, Mezey JG, Brooks SA, Sutter NB: Four loci explain 83% of size variation in the horse. PLoS ONE 2012, 7:e39929.
  • [44]Rehfeldt C, Te Pas MF, Wimmers K, Brameld JM, Nissen PM, Berri C, Valente LM, Power DM, Picard B, Stickland NC, Oksbjerg N: Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle based food. II – Genetic factors related to animal performance and advances in methodology. Animal 2011, 5:718-730.
  • [45]Zhou X, Benson KF, Ashar HR, Chada K: Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nat 1995, 376(6543):771-774.
  • [46]Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, Aryee MJ, Irizarry RA, Herbstman J, Witter FR, Goldman LR, Feinberg AP, Fallin MD: DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth. Int J Epidemiol 2012, 41:188-199.
  • [47]Ahmed ZM, Yousaf R, Lee BC, Khan SN, Lee S, Lee K, Husnain T, Rehman AU, Bonneux S, Ansar M, Ahmad W, Leal SM, Gladyshev VN, Belyantseva IA, Van Camp G, Riazuddin S, Friedman TB, Riazuddin S: Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74. Am J Hum Genet 2011, 88(1):19-29.
  • [48]Pillas D, Hoggart CJ, Evans DM, O'Reilly PF, Sipilä K, Lähdesmäki R, Millwood IY, Kaakinen M, Netuveli G, Blane D, Charoen P, Sovio U, Pouta A, Freimer N, Hartikainen AL, Laitinen J, Vaara S, Glaser B, Crawford P, Timpson NJ, Ring SM, Deng G, Zhang W, McCarthy MI, Deloukas P, Peltonen L, Elliott P, Coin LJ, Smith GD, Jarvelin MR: Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS Genet 2010, 6(2):e1000856.
  • [49]Ben-Asher E, Zelzer E, Lancet D: LEMD3: The gene responsible for bone density disorders (osteopoikilosis). Isr Med Assoc J 2005, 7:273-274.
  • [50]Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJ, Savarirayan R, Van Hul W, Vanhoenacker F, Huylebroeck D, De Paepe A, Naeyaert JM, Vandesompele J, Speleman F, Verschueren K, Coucke PJ, Mortier GR: Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet 2004, 36(11):1213-1218.
  • [51]McClure MC, Morsci MS, Schnabel RD, Kim JW, Yao P, Rolf MM, McKay SD, Gregg SJ, Chapple RH, Northcutt SL, Taylor JF: A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet 2010, 41:597-607.
  • [52]Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH: TIGAR, a p53 inducible regulator of glycolysis and apoptosis. Cell 2006, 126:107-120.
  • [53]Kimata M, Matoba S, Iwai-Kanai E, Nakamura H, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Mita Y, Okigaki M, Ikeda K, Tatsumi T, Matsubara H: p53 and TIGAR regulate cardiac myocyte energy homeostasis under hypoxic stress. Am J Physiol Heart Circ Physiol 2010, 299:H1908-H1916.
  • [54]Kinoshita M: The septins. Genome Biol 2003, 4:236.
  • [55]Sirajuddin M, Farkasovsky M, Hauer F, Kühlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A: Structural insight into filament formation by mammalian septins. Nature 2007, 449:311-317.
  • [56]Imumorin IG, Kim EH, Lee YM, De Koning DJ, van Arendonk JA, De Donato M, Taylor JF, Kim JJ: Genome scan for parent-of-origin QTL effects on bovine growth and carcass traits. Front Genet 2011, 2:44.
  • [57]Yokouchi K, Mizoguchi Y, Watanabe T, Iwamoto E, Sugimoto Y, Takasuga A: Identification of a 3.7-Mb region for a marbling QTL on bovine chromosome 4 by identical by descent and association analysis. Anim Genet 2009, 40:945-951.
  • [58]Gutierrez-Gil B, Ball N, Burton D, Haskell M, Williams JL, Wiener P: Identification of quantitative trait loci affecting cattle temperament. J Hered 2008, 99:629-638.
  • [59]Prince JE, Brignall AC, Cutforth T, Shen K, Cloutier JF: Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development 2013, 140:2398-2408.
  • [60]Bhalla K, Luo Y, Buchan T, Beachem MA, Guzauskas GF, Ladd S, Bratcher SJ, Schroer RJ, Balsamo J, DuPont BR, Lilien J, Srivastava AK: Alterations in CDH15 and KIRREL3 in patients with mild to severe intellectual disability. Am J Hum Genet 2008, 83:703-713.
  • [61]Nadesalingam J, Plante Y, Gibson JP: Detection of QTL for milk production on Chromosomes 1 and 6 of Holstein cattle. Mamm Genome 2001, 12:27-31.
  • [62]Zhang Q, Boichard D, Hoeschele I, Ernst C, Eggen A, Murkve B, Pfister-Genskow M, Witte LA, Grignola FE, Uimari P, Thaller G, Bishop MD: Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genet 1998, 149:1959-1973.
  • [63]Chan LF, Webb TR, Chung TT, Meimaridou E, Cooray SN, Guasti L, Chapple JP, Egertová M, Elphick MR, Cheetham ME, Metherell LA, Clark AJ: MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci U S A 2009, 106:6146-6151.
  • [64]Fontanesi L, Beretti F, Dall'Olio S, Portolano B, Matassino D, Russo V: A melanocortin 1 receptor (MC1R) gene polymorphism is useful for authentication of Massese sheep dairy products. J Dairy Res 2011, 78:122-128.
  • [65]Maudet C, Taberlet P: Holstein’s milk detection in cheeses inferred from melanocortin receptor 1 (MC1R) gene polymorphism. J Dairy Sci 2002, 85:707-715.
  • [66]Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, Ramanathan V, Strochlic DE, Ferket P, Linhart K, Ho C, Novoselova TV, Garg S, Ridderstråle M, Marcus C, Hirschhorn JN, Keogh JM, O'Rahilly S, Chan LF, Clark AJ, Farooqi IS, Majzoub JA: Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 2013, 341:275-278.
  • [67]Patel K, Scrimieri F, Ghosh S, Zhong J, Kim MS, Ren YR, Morgan RA, Iacobuzio-Donahue CA, Pandey A, Kern SE: FAM190A deficiency creates a cell division defect. Am J Pathol 2013, 183:296-303.
  • [68]Laramée M, Simoneau L, Lafond J: Phospholipase C axis is the preferential pathway leading to PKC activation following PTH or PTHrP stimulation in human term placenta. Life Sci 2002, 72:215-225.
  • [69]Casas E, Shackelford SD, Keele JW, Stone RT, Kappes SM, Koohmaraie M: Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J Anim Sci 2000, 78:560-569.
  • [70]Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME: Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 2010, 6(9):e1001139.
  • [71]Gianola D: Priors in whole-genome regression: Bayesian alphabet returns. Genetics 2013, 194:573-596.
  • [72]Decker JE, McKay SD, Rolf MM, Kim JW, Alcalá AM, Sonstegard TS, Hanotte O, Götherström A, Seabury CM, Praharani L, Babar ME, Regitano LC, Yildiz MA, Heaton MP, Lui W, Lei CZ, Reecy JM, Saif-Ur-Rehman M, Schnabel RD, Taylor JF: Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle. PLoS Genetics 2014, 10(3):e1004254.
  • [73]Reimand J, Arak T, Vilo J: g:Profiler–a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 2011, 39:W307-315.
  • [74]Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb M: MAP kinases. Chem Rev 2001, 101:2449-2476.
  • [75]Garrick DJ, Taylor JF, Fernando RL: Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 2009, 41:55.
  • [76]Saatchi M, McClure MC, McKay SD, Rolf MM, Kim J, Decker JE, Taxis TM, Chapple RH, Ramey HR, Northcutt SL, Bauck S, Woodward B, Dekkers JC, Fernando RL, Schnabel RD, Garrick DJ, Taylor JF: Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genet Sel Evol 2011, 43:40.
  • [77]Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ: Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genet Sel Evol 2012, 44:38.
  • [78]Saatchi M, Ward J, Garrick DJ: Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations. J Anim Sci 2013, 91(4):1538-1551.
  • [79]Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.
  • [80]Habier D, Fernando RL, Kizilkaya K, Garrick DJ: Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics 2011, 12:186.
  • [81]Kizilkaya K, Fernando RL, Garrick DJ: Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J Anim Sci 2010, 88:544-551.
  • [82]Garrick DJ, Fernando RL: Implementing a QTL detection study (GWAS) using genomic prediction methodology. In Genome-Wide Association Studies and Genomic Prediction. Edited by Gondro C, van der Werf J, Hayes B. Springer: Humana Press; 2013:275-298. ISBN: 978-1-62703-446-3
  • [83]Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S: The generic genome browser: a building block for a model organism system database. Genome Res 2002, 12:1599-1610.
  • [84]Ellson J, Gansner E, Koutsofios L, North S, Woodhull G: Graphviz and Dynagraph – static and dynamic graph drawing tools. In Graph Drawing Software. Berlin Heidelberg: Springer; 2004:127-148.
  文献评价指标  
  下载次数:6次 浏览次数:28次