期刊论文详细信息
BMC Genetics
A multicopy Y-chromosomal SGNH hydrolase gene expressed in the testis of the platyfish has been captured and mobilized by a Helitron transposon
Jean-Nicolas Volff2  Delphine Galiana2  Manfred Schartl3  Domitille Chalopin2  Marta Tomaszkiewicz1 
[1]Present address: Center for Medical Genomics, Department of Biology, Penn State University, University Park, PA 16802, USA
[2]Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR 5242, Université de Lyon I, 46 allée d'Italie, Lyon 69364, Lyon Cedex 07, France
[3]Physiologische Chemie, Biozentrum, University of Würzburg, Am Hubland, and Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, Würzburg 97074, Germany
关键词: Transposition;    Helitron;    SGNH hydrolase;    Testis;    Y chromosome;    Sex chromosomes;    Sex determination;    Xiphophorus maculatus;    Platyfish;   
Others  :  866263
DOI  :  10.1186/1471-2156-15-44
 received in 2013-07-18, accepted in 2014-03-19,  发布年份 2014
PDF
【 摘 要 】

Background

Teleost fish present a high diversity of sex determination systems, with possible frequent evolutionary turnover of sex chromosomes and sex-determining genes. In order to identify genes involved in male sex determination and differentiation in the platyfish Xiphophorus maculatus, bacterial artificial chromosome contigs from the sex-determining region differentiating the Y from the X chromosome have been assembled and analyzed.

Results

A novel three-copy gene called teximY (for testis-expressed in Xiphophorus maculatus on the Y) was identified on the Y but not on the X chromosome. A highly related sequence called texim1, probably at the origin of the Y-linked genes, as well as three more divergent texim genes were detected in (pseudo)autosomal regions of the platyfish genome. Texim genes, for which no functional data are available so far in any organism, encode predicted esterases/lipases with a SGNH hydrolase domain. Texim proteins are related to proteins from very different origins, including proteins encoded by animal CR1 retrotransposons, animal platelet-activating factor acetylhydrolases (PAFah) and bacterial hydrolases. Texim gene distribution is patchy in animals. Texim sequences were detected in several fish species including killifish, medaka, pufferfish, sea bass, cod and gar, but not in zebrafish. Texim-like genes are also present in Oikopleura (urochordate), Amphioxus (cephalochordate) and sea urchin (echinoderm) but absent from mammals and other tetrapods. Interestingly, texim genes are associated with a Helitron transposon in different fish species but not in urochordates, cephalochordates and echinoderms, suggesting capture and mobilization of an ancestral texim gene in the bony fish lineage. RT-qPCR analyses showed that Y-linked teximY genes are preferentially expressed in testis, with expression at late stages of spermatogenesis (late spermatids and spermatozeugmata).

Conclusions

These observations suggest either that TeximY proteins play a role in Helitron transposition in the male germ line in fish, or that texim genes are spermatogenesis genes mobilized and spread by transposable elements in fish genomes.

【 授权许可】

   
2014 Tomaszkiewicz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727051546755.pdf 3794KB PDF download
127KB Image download
67KB Image download
76KB Image download
58KB Image download
95KB Image download
139KB Image download
141KB Image download
49KB Image download
【 图 表 】

【 参考文献 】
  • [1]Devlin RH, Nagahama Y: Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208:191-364.
  • [2]Kikuchi K, Hamaguchi S: Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 2013, 242:339-353.
  • [3]Kobayashi Y, Nagahama Y, Nakamura M: Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 2012, 7:115-125.
  • [4]Volff JN, Nanda I, Schmid M, Schartl M: Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Dev 2007, 1:85-99.
  • [5]Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M: DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 2002, 417:559-563.
  • [6]Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M: A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci U S A 2002, 99:11778-11783.
  • [7]Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M: Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 2012, 191:163-170.
  • [8]Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strüssmann CA: A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A 2012, 109:2955-2959.
  • [9]Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y: An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 2012, 22:1423-1428.
  • [10]Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K: A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 2012, 8:e1002798.
  • [11]Graham P, Penn JK, Schedl P: Masters change, slaves remain. Bioessays 2003, 25:1-4.
  • [12]Schultheis C, Böhne A, Schartl M, Volff JN, Galiana-Arnoux D: Sex determination diversity and sex chromosome evolution in poeciliid fish. Sex Dev 2009, 3:68-77.
  • [13]Froschauer A, Körting C, Katagiri T, Aoki T, Asakawa S, Shimizu N, Schartl M, Volff JN: Construction and initial analysis of bacterial artificial chromosome (BAC) contigs from the sex-determining region of the platyfish Xiphophorus maculatus. Gene 2002, 295:247-254.
  • [14]Volff JN, Selz Y, Hoffmann C, Froschauer A, Schultheis C, Schmidt C, Zhou Q, Bernhardt W, Hanel R, Böhne A, Brunet F, Ségurens B, Couloux A, Bernard-Samain S, Barbe V, Ozouf-Costaz C, Galiana D, Lohse MJ, Schartl M: Gene amplification and functional diversification of melanocortin 4 receptor at an extremely polymorphic locus controlling sexual maturation in the platyfish. Genetics 2013, 195:1337-1352.
  • [15]Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff JN, Lesch KP, Bisazza A, Minx P, Hillier L, Wilson RK, Fuerstenberg S, Boore J, Searle S, Postlethwait JH, Warren WC: The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 2013, 45:567-572.
  • [16]Volff JN, Körting C, Froschauer A, Zhou Q, Wilde B, Schultheis C, Selz Y, Sweeney K, Duschl J, Wichert K, Altschmied J, Schartl M: The Xmrk oncogene can escape nonfunctionalization in a highly unstable subtelomeric region of the genome of the fish Xiphophorus. Genomics 2003, 82:470-479.
  • [17]Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF: GDSL family of serine esterases/lipases. Prog Lipid Res 2004, 43:534-552.
  • [18]Lo YC, Lin SC, Shaw JF, Liaw YC: Crystal structure of the Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 2003, 330:539-551.
  • [19]Kapitonov VV, Jurka J: Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 2001, 98:8714-8719.
  • [20]Thomas J, Schaack S, Pritham EJ: Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol 2010, 2:656-664.
  • [21]Du C, Caronna J, He L, Dooner HK: Computational prediction and molecular confirmation of Helitron transposons in the maize genome. BMC Genomics 2008, 9:51. BioMed Central Full Text
  • [22]Hollister JD, Gaut BS: Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 2007, 24:2515-2524.
  • [23]Van den Hurk R, Peute J, Vermeij JAJ: Ultrastructural study of the testis of the black molly (Mollienisia latipinna) I. The intratesticular efferent duct system. Proc Kon Ned Akad Wet Ser 1974, 77:460-469.
  • [24]Molyneaux K, Wylie C: Primordial germ cell migration. Int J Dev Biol 2004, 48:537-544.
  • [25]Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M: Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 2008, 454:519-522.
  • [26]Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M: A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci U S A 2008, 105:2469-2474.
  • [27]Lampert KP, Schmidt C, Fischer P, Volff JN, Hoffmann C, Muck J, Lohse MJ, Ryan MJ, Schartl M: Determination of onset of sexual maturation and mating behavior by melanocortin receptor 4 polymorphisms. Curr Biol 2010, 20:1729-1734.
  • [28]Ellegren H, Parsch J: The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 2007, 8:689-698.
  • [29]Arai H, Koizumi H, Aoki J, Inoue K: Platelet-activating factor acetylhydrolase (PAF-AH). J Biochem 2002, 131:635-640.
  • [30]Hough SR, Parks JE: Platelet-activating factor acetylhydrolase activity in seminal plasma from the bull, stallion, rabbit, and rooster. Biol Reprod 1994, 50:912-916.
  • [31]Levine AS, Kort HI, Toledo AA, Roudebush WE: A review of the effect of platelet-activating factor on male reproduction and sperm function. J Androl 2002, 23:471-476.
  • [32]Scott BT, Olson N, Long GL, Bovill EG: Novel isoforms of intracellular platelet activating factor acetylhydrolase (PAFAH1b2) in human testis; encoded by alternatively spliced mRNAs. Prostaglandins Other Lipid Mediat 2008, 85:69-80.
  • [33]Yan W, Assadi AH, Wynshaw-Boris A, Eichele G, Matzuk MM, Clark GD: Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Proc Natl Acad Sci U S A 2003, 100:7189-7194.
  • [34]Zhu J, Massey JB, Mitchell-Leef D, Elsner CW, Kort HI, Roudebush WE: Platelet-activating factor acetylhydrolase activity affects sperm motility and serves as a decapacitation factor. Fertil Steril 2006, 85:391-394.
  • [35]Bonin F, Ryan SD, Migahed L, Mo F, Lallier J, Franks DJ, Arai H, Bennett SA: Anti-apoptotic actions of the platelet-activating factor acetylhydrolase I alpha2 catalytic subunit. J Biol Chem 2004, 279:52425-52436.
  • [36]Tokuoka SM, Ishii S, Kawamura N, Satoh M, Shimada A, Sasaki S, Hirotsune S, Wynshaw-Boris A, Shimizu T: Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur J Neurosci 2003, 18:563-570.
  • [37]Kapitonov VV, Jurka J: The esterase and PHD domains in CR1-like non-LTR retrotransposons. Mol Biol Evol 2003, 20:38-46.
  • [38]Zhou Q, Froschauer A, Schultheis C, Schmidt C, Bienert GP, Wenning M, Dettai A, Volff JN: Helitron transposons on the sex chromosomes of the platyfish Xiphophorus maculatus and their evolution in animal genomes. Zebrafish 2006, 3:39-52.
  • [39]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [40]Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 1996, 12:543-548.
  • [41]Gouy M, Guindon S, Gascuel O: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  • [42]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [43]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
  • [44]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [45]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-448.
  • [46]Øvergård AC, Nerland AH, Patel S: Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus Hippoglossus L.) during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Mol Biol 2010, 11:11-36. BioMed Central Full Text
  • [47]Zhang Z, Hu J: Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative Real-Time RT-PCR. Toxicol Sci 2007, 95:356-368.
  文献评价指标  
  下载次数:36次 浏览次数:89次