期刊论文详细信息
BMC Evolutionary Biology
Multilocus coalescent analyses reveal the demographic history and speciation patterns of mouse lemur sister species
Anne D Yoder1  Amy L Russell3  Kellie L Heckman2  Christopher Blair1 
[1] Department of Biology, Duke University, Box 90338, BioSci 130 Science Drive, Durham, NC 27708, USA;Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;Department of Biology, Grand Valley State University, Allendale, MI 49401, USA
关键词: Peripatric speciation;    Multilocus;    Microcebus;    Lemur evolution;    Historical demography;    Modes of speciation;    Coalescent methods;   
Others  :  857643
DOI  :  10.1186/1471-2148-14-57
 received in 2013-12-18, accepted in 2014-03-18,  发布年份 2014
PDF
【 摘 要 】

Background

Debate continues as to whether allopatric speciation or peripatric speciation through a founder effect is the predominant force driving evolution in vertebrates. The mouse lemurs of Madagascar are a system in which evolution has generated a large number of species over a relatively recent time frame. Here, we examine speciation patterns in a pair of sister species of mouse lemur, Microcebus murinus and M. griseorufus. These two species have ranges that are disparately proportioned in size, with M. murinus showing a much more extensive range that marginally overlaps that of M. griseorufus. Given that these two species are sister taxa, the asymmetric but overlapping geographic ranges are consistent with a model of peripatric speciation. To test this hypothesis, we analyze DNA sequence data from four molecular markers using coalescent methods. If the peripatric speciation model is supported, we predict substantially greater genetic diversity in M. murinus, relative to M. griseorufus. Further, we expect a larger effective population size in M. murinus and in the common ancestor of the two species than in M. griseorufus, with a concomitant decrease in gene tree/species tree incongruence in the latter and weak signs of demographic expansion in M. murinus.

Results

Our results reject a model of peripatric divergence. Coalescent effective population size estimates were similar for both extant species and larger than that estimated for their most recent common ancestor. Gene tree results show similar levels of incomplete lineage sorting within species with respect to the species tree, and locus-specific estimates of genetic diversity are concordant for both species. Multilocus demographic analyses suggest range expansions for M. murinus, with this species also experiencing more recent population declines over the past 160 thousand years.

Conclusions

Results suggest that speciation occurred in allopatry from a common ancestor narrowly distributed throughout southwest Madagascar, with subsequent range expansion for M. murinus. Population decline in M. murinus is likely related to patterns of climate change in Madagascar throughout the Pleistocene, potentially exacerbated by continual anthropogenic perturbation. Genome-level data are needed to quantify the role of niche specialization and adaptation in shaping the current ranges of these species.

【 授权许可】

   
2014 Blair et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723083059219.pdf 1405KB PDF download
55KB Image download
49KB Image download
34KB Image download
60KB Image download
【 图 表 】

【 参考文献 】
  • [1]Hey J, Nielsen R: Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 2004, 167(2):747-760.
  • [2]Hey J: Isolation with migration models for more than two populations. Mol Biol Evol 2010, 27(4):905-920.
  • [3]Hey J: The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol Biol Evol 2010, 27(4):921-933.
  • [4]Edwards S, Beerli P: Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 2000, 54(6):1839-1854.
  • [5]Felsenstein J: Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. Genet Res 1992, 59(02):139-147.
  • [6]Kuhner MK, Yamato J, Felsenstein J: Estimating effective population size and mutation rate from sequence data using metropolis-hastings sampling. Genet 1995, 140(4):1421-1430.
  • [7]Beerli P, Felsenstein J: Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genet 1999, 152(2):763-773.
  • [8]Rosenberg NA, Feldman MW: The relationship between coalescence times and population divergence times. In Modern Developments in Theoretical Population Genetics. Edited by Slatkin M, Veuille M. Oxford: Oxford University Press; 2002:130-164.
  • [9]Yang Z, Rannala B: Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci 2010, 107(20):9264-9269.
  • [10]Knowles LL, Maddison WP: Statistical phylogeography. Mol Ecol 2002, 11(12):2623-2635.
  • [11]Jennings WB, Edwards SV: Speciational history of Australian grass finches (Poephila) inferred from thirty gene trees. Evol 2005, 59(9):2033-2047.
  • [12]Russell A, Ranivo J, Palkovacs E, Goodman S, Yoder AD: Working at the interface of phylogenetics and population genetics: a biogeographical analysis of Triaenops spp.(Chiroptera: Hipposideridae). Mol Ecol 2007, 16(4):839-851.
  • [13]Rundle HD, Nosil P: Ecological speciation. Ecol Lett 2005, 8(3):336-352.
  • [14]Nosil P, Gompert Z, Farkas TE, Comeault AA, Feder JL, Buerkle CA, Parchman TL: Genomic consequences of multiple speciation processes in a stick insect. Proc Biol Sci 2012, 279(1749):5058-5065.
  • [15]Nosil P, Funk DJ, Ortiz-Barrientos D: Divergent selection and heterogeneous genomic divergence. Mol Ecol 2009, 18(3):375-402.
  • [16]Malay MCMD, Paulay G: Peripatric speciation drives diversification and distributional pattern of reef hermit crabs (Decapoda: Diogenidae: Calcinus). Evol 2010, 64(3):634-662.
  • [17]Bernardi G, Bucciarelli G, Costagliola D, Robertson DR, Heiser J: Evolution of coral reef fish Thalassoma spp.(Labridae). 1. Molecular phylogeny and biogeography. Mar Biol 2004, 144(2):369-375.
  • [18]Maddison WP: Gene trees in species trees. Syst Biol 1997, 46(3):523-536.
  • [19]Moritz C, Cicero C: DNA barcoding: promise and pitfalls. PLoS Biol 2004, 2:1529-1531.
  • [20]Blair C, Murphy RW: Recent trends in molecular phylogenetic analysis: where to next? J Hered 2011, 102(1):130-138.
  • [21]Rasoloarison RM, Goodman SM, Ganzhorn JU: Taxonomic revision of mouse lemurs (Microcebus) in the western portions of Madagascar. Int J Primatol 2000, 21(6):963-1019.
  • [22]Rasoloarison RM, Weisrock DW, Yoder AD, Rakotondravony D, Kappeler PM: Two new species of mouse lemurs (Cheirogaleidae: Microcebus) from eastern Madagascar. Int J Primatol 2013, 34(3):455-469.
  • [23]Kappeler P, Rasoloarison R, Razafimanantsoa L, Walter L, Roos C: Morphology, behaviour and molecular evolution of giant mouse lemurs (Mirza spp.) Gray, 1870, with description of a new species. Primate Report 2005, 71:3.
  • [24]Louis EE Jr, Coles MS, Andriantompohavana R, Sommer JA, Engberg SE, Zaonarivelo JR, Mayor MI, Brenneman RA: Revision of the mouse lemurs (Microcebus) of eastern Madagascar. Int J Primatol 2006, 27(2):347-389.
  • [25]Radespiel U, Ratsimbazafy JH, Rasoloharijaona S, Raveloson H, Andriaholinirina N, Rakotondravony R, Randrianarison RM, Randrianambinina B: First indications of a highland specialist among mouse lemurs (Microcebus spp.) and evidence for a new mouse lemur species from eastern Madagascar. Primates 2012, 53(2):157-170.
  • [26]Martin RD: Review lecture: Adaptive radiation and behaviour of the Malagasy lemurs. Phil Trans Roy Soc Lond B Biol Sci 1972, 264:295-352.
  • [27]Tattersall I: Primates of Madagascar. 52nd edition. New York: Columbia University Press; 1982.
  • [28]Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 2007, 34(1):102-117.
  • [29]Russell AL, Goodman SM, Fiorentino I, Yoder AD: Population genetic analysis of Myzopoda (Chiroptera: Myzopodidae) in Madagascar. J Mammal 2008, 89(1):209-221.
  • [30]Wilmé L, Goodman SM, Ganzhorn JU: Biogeographic evolution of Madagascar’s microendemic biota. Sci 2006, 312(5776):1063-1065.
  • [31]Townsend TM, Vieites DR, Glaw F, Vences M: Testing species-level diversification hypotheses in Madagascar: the case of microendemic Brookesia leaf chameleons. Syst Biol 2009, 58(6):641-656.
  • [32]Vences M, Wollenberg KC, Vieites DR, Lees DC: Madagascar as a model region of species diversification. Trends Ecol Evol 2009, 24(8):456-465.
  • [33]Mittermeier RA, Tattersall L, Konstant WR, Meyers DM, Mast RB: Lemurs of Madagascar. 1994 edition. Washington D.C: Conservation International; 1994.
  • [34]Yoder AD, Rasoloarison RM, Goodman SM, Irwin JA, Atsalis S, Ravosa MJ, Ganzhorn JU: Remarkable species diversity in Malagasy mouse lemurs (primates, Microcebus). Proc Natl Acad Sci 2000, 97(21):11325-11330.
  • [35]Yoder AD, Heckman KL: Mouse lemur phylogeography revises a model of ecogeographic constraint in Madagascar. In Primate Biogeography. New York: Springer; 2006:255-268.
  • [36]Olivieri G, Zimmermann E, Randrianambinina B, Rasoloharijaona S, Rakotondravony D, Guschanski K, Radespiel U: The ever-increasing diversity in mouse lemurs: three new species in north and northwestern Madagascar. Mol Phylogenet Evol 2007, 43(1):309-327.
  • [37]Schmid J, Kappeler P: Sympatric mouse lemurs (Microcebus spp.) in western Madagascar. Folia Primatol 1994, 63(3):162-170.
  • [38]Zimmermann E, Cepok S, Rakotoarison N, Radespiel U: Sympatric mouse lemurs in north-west Madagascar: a new rufous mouse lemur species (Microcebus ravelobensis). Folia Primatol 1998, 69(2):106-114.
  • [39]Yoder AD, Burns MM, Génin F: Molecular evidence of reproductive isolation in sympatric sibling species of mouse lemurs. Int J Primatol 2002, 23(6):1335-1343.
  • [40]Gligor M, Ganzhorn J, Rakotondravony D, Ramilijaona O, Razafimahatratra E, Zischler H, Hapke A: Hybridization between mouse lemurs in an ecological transition zone in southern Madagascar. Mol Ecol 2009, 18(3):520-533.
  • [41]Hapke A, Gligor M, Rakotondranary SJ, Rosenkranz D, Zupke O: Hybridization of mouse lemurs: different patterns under different ecological conditions. BMC Evol Biol 2011, 11(1):297. BioMed Central Full Text
  • [42]Martin RD: Origins, diversity and relationships of lemurs. Int J Primatol 2000, 21(6):1021-1049.
  • [43]Heckman KL, Mariani CL, Rasoloarison R, Yoder AD: Multiple nuclear loci reveal patterns of incomplete lineage sorting and complex species history within western mouse lemurs (Microcebus). Mol Phylogenet Evol 2007, 43(2):353-367.
  • [44]Weisrock DW, Rasoloarison RM, Fiorentino I, Ralison JM, Goodman SM, Kappeler PM, Yoder AD: Delimiting species without nuclear monophyly in Madagascar’s mouse lemurs. PLoS One 2010, 5(3):e9883.
  • [45]Heckman KL, Rasoazanabary E, Machlin E, Godfrey LR, Yoder AD: Incongruence between genetic and morphological diversity in Microcebus griseorufus of Beza Mahafaly. BMC Evol Biol 2006, 6(1):98. BioMed Central Full Text
  • [46]Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28(12):1647-1649.
  • [47]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [48]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26(19):2462-2463.
  • [49]Padidam M, Sawyer S, Fauquet CM: Possible emergence of new geminiviruses by frequent recombination. Virol 1999, 265(2):218-225.
  • [50]Smith JM: Analyzing the mosaic structure of genes. J Mol Evol 1992, 34(2):126-129.
  • [51]Martin D, Rybicki E: RDP: detection of recombination amongst aligned sequences. Bioinformatics 2000, 16(6):562-563.
  • [52]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [53]Horvath JE, Weisrock DW, Embry SL, Fiorentino I, Balhoff JP, Kappeler P, Wray GA, Willard HF, Yoder AD: Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar’s lemurs. Genome Res 2008, 18(3):489-499.
  • [54]Knowles LL, Carstens BC: Delimiting species without monophyletic gene trees. Syst Biol 2007, 56(6):887-895.
  • [55]Heled J, Drummond A: Bayesian inference of population size history from multiple loci. BMC Evol Biol 2008, 8(1):289. BioMed Central Full Text
  • [56]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29(8):1969-1973.
  • [57]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [58]Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 2012, 9(8):772.
  • [59]Yoder AD, Yang Z: Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context. Mol Ecol 2004, 13(4):757-773.
  • [60]Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data. Mol Biol Evol 2010, 27(3):570-580.
  • [61]Drummond AJ, Ho SY, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4(5):e88.
  • [62]Rambaut A, Drummond A: Tracer v1. 4. 2007. http://beast.bio.ed.ac.uk/Tracer webcite
  • [63]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [64]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008, 57(5):758-771.
  • [65]Yang Z: On the estimation of ancestral population sizes of modern humans. Genet Res 1997, 69(2):111-116.
  • [66]Chen F-C, Li W-H: Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 2001, 68(2):444-456.
  • [67]Wollenberg KC, Vieites DR, Glaw F, Vences M: Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol Biol 2011, 11(1):217. BioMed Central Full Text
  • [68]Schneider N, Chikhi L, Currat M, Radespiel U: Signals of recent spatial expansions in the grey mouse lemur (Microcebus murinus). BMC Evol Biol 2010, 10(1):105. BioMed Central Full Text
  • [69]Shi JJ, Chan LM, Rakotomalala Z, Heilman AM, Goodman SM, Yoder AD: Latitude drives diversification in Madagascar’s endemic dry forest rodent Eliurus myoxinus (subfamily Nesomyinae). Biol J Linn Soc 2013, 110(3):500-517.
  • [70]Burney DA, Burney LP, Godfrey LR, Jungers WL, Goodman SM, Wright HT, Jull A: A chronology for late prehistoric Madagascar. J Hum Evol 2004, 47(1):25-63.
  • [71]Perez V, Burney D, Godfrey L, Nowak-Kemp M: Box 4. Butchered sloth lemurs. Evol Anthropol 2003, 12(6):260.
  • [72]Humbert H: La destruction d’une flore insulaire par le feu: principaux aspects de la végétation à Madagascar, documents photographiques et notices, vol. 5. Tananarive, Madagascar: Impr. Moderne de l’Emyrne, G. Pitot et Cie; 1927.
  • [73]Mahé J, Sourdat M: Sur l’extinction des vertébrés subfossiles et l’aridification du climat dans le Sud-ouest de Madagascar. Bulletin de la Société de Géologie de France 1972, 14:295-309.
  • [74]Martin PS: Prehistoric overkill: the global model. In Quaternary Extinctions: a Prehistoric Revolution. Edited by Martin PS, Klein RG. Tucson: University of Arizona Press; 1984:354-403.
  • [75]Dewar RE: Extinctions in Madagascar: the loss of the subfossil fauna. In Quaternary Extinctions: a Prehistoric Revolution. Edited by Martin PS, Klein RG. Tucson: University of Arizona Press; 1984:574-593.
  • [76]Burney DA: Rates, patterns, and processes of landscape transformation and extinction in Madagascar. In Extinctions in Near Time: Causes, Contexts, and Consequences. Edited by MacPhee RDE. New York: Springer Science+Business Media; 1999:145-164.
  • [77]Rakotondranary SJ, Hapke A, Ganzhorn JU: Distribution and morphological variation of Microcebus spp. along an environmental gradient in southeastern Madagascar. Int J Primatol 2011, 32(5):1037-1057.
  • [78]Rakotondranary SJ, Ganzhorn JU: Habitat separation of sympatric Microcebus spp. in the dry spiny forest of south-eastern Madagascar. Folia Primatol 2012, 82(4–5):212-223.
  • [79]Rakotondravony R, Radespiel U: Varying patterns of coexistence of two mouse lemur species (Microcebus ravelobensis and M. murinus) in a heterogeneous landscape. Am J Primatol 2009, 71(11):928-938.
  • [80]Harper GJ, Steininger MK, Tucker CJ, Juhn D, Hawkins F: Fifty years of deforestation and forest fragmentation in Madagascar. Environ Conservat 2007, 34(4):325.
  • [81]Irwin MT, Wright PC, Birkinshaw C, Fisher BL, Gardner CJ, Glos J, Goodman SM, Loiselle P, Rabeson P, Raharison J-L: Patterns of species change in anthropogenically disturbed forests of Madagascar. Biol Conservat 2010, 143(10):2351-2362.
  文献评价指标  
  下载次数:44次 浏览次数:3次