BMC Molecular Biology | |
Cruciform structures are a common DNA feature important for regulating biological processes | |
Cheryl Arrowsmith3  Eva B Jagelská1  Rob C Laister2  Václav Brázda1  | |
[1] Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic;Division of Stem Cell and Developmental Biology, Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada;Cancer Genomics & Proteomics, Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada | |
关键词: protein-DNA binding; inverted repeat; cruciform structure; | |
Others : 1129273 DOI : 10.1186/1471-2199-12-33 |
|
received in 2011-02-21, accepted in 2011-08-05, 发布年份 2011 | |
【 摘 要 】
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others.
Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
【 授权许可】
2011 Brázda et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150226022145544.pdf | 1186KB | download | |
Figure 5. | 92KB | Image | download |
Figure 4. | 51KB | Image | download |
Figure 3. | 303KB | Image | download |
Figure 2. | 90KB | Image | download |
20150213014413268.pdf | 274KB | download |
【 图 表 】
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Smith GR: Meeting DNA palindromes head-to-head. Genes Dev 2008, 22(19):2612-2620.
- [2]Palecek E: Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol 1991, 26:151-226.
- [3]van Holde K, Zlatanova J: Unusual DNA structures, chromatin and transcription. Bioessays 1994, 16(1):59-68.
- [4]Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM: Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 1999, 292(5):1149-1160.
- [5]Mikheikin AL, Lushnikov AY, Lyubchenko YL: Effect of DNA supercoiling on the geometry of holliday junctions. Biochemistry 2006, 45(43):12998-13006.
- [6]Limanskaia O, Limanskii AP: Distribution of potentially hairpin-loop structures in the genome of bovine retroviruses. Vopr Virusol 2009, 54(4):27-32.
- [7]Werbowy K, Cieslinski H, Kur J: Characterization of a cryptic plasmid pSFKW33 from Shewanella sp. 33B. Plasmid 2009, 62(1):44-49.
- [8]Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M: Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 1996, 63(1):1-22.
- [9]Aranda A, Perez-Ortin JE, Benham CJ, Del Olmo ML: Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin. Yeast 1997, 13(4):313-326.
- [10]Bates AD, Maxwell A: DNA Topology. second edition. Oxford: Oxford University Press; 2005.
- [11]Mani P, Yadav VK, Das SK, Chowdhury S: Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination. PLoS One 2009, 4(2):e4399.
- [12]Lin CT, Lyu YL, Liu LF: A cruciform-dumbbell model for inverted dimer formation mediated by inverted repeats. Nucleic Acids Res 1997, 25(15):3009-3016.
- [13]Kim E, Deppert W: The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol 2003, 81(3):141-150.
- [14]Drolet M: Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 2006, 59(3):723-730.
- [15]Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR: Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 2004, 5(11):R87. BioMed Central Full Text
- [16]Mazur SJ, Sakaguchi K, Appella E, Wang XW, Harris CC, Bohr VA: Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J Mol Biol 1999, 292(2):241-249.
- [17]Brazdova M, Palecek J, Cherny DI, Billova S, Fojta M, Pecinka P, Vojtesek B, Jovin TM, Palecek E: Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res 2002, 30(22):4966-4974.
- [18]Campos J, Gonzalez-Quintela A, Quinteiro C, Gude F, Perez LF, Torre JA, Vidal C: The -159C/T polymorphism in the promoter region of the CD14 gene is associated with advanced liver disease and higher serum levels of acute-phase proteins in heavy drinkers. Alcohol Clin Exp Res 2005, 29(7):1206-1213.
- [19]Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli NR: The structure of supercoiled intermediates in DNA replication. Cell 1998, 94(6):819-827.
- [20]Vologodskii AV, Cozzarelli NR: Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct 1994, 23:609-643.
- [21]Vologodskii A, Cozzarelli NR: Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys J 1996, 70(6):2548-2556.
- [22]Lyubchenko YL: DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys 2004, 41(1):75-98.
- [23]Kurahashi H, Inagaki H, Yamada K, Ohye T, Taniguchi M, Emanuel BS, Toda T: Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J Biol Chem 2004, 279(34):35377-35383.
- [24]Shlyakhtenko LS, Potaman VN, Sinden RR, Lyubchenko YL: Structure and dynamics of supercoil-stabilized DNA cruciforms. J Mol Biol 1998, 280(1):61-72.
- [25]Declais AC, Lilley DM: New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin Struct Biol 2008, 18(1):86-95.
- [26]Tolmasky ME, Colloms S, Blakely G, Sherratt DJ: Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology 2000, 146(Pt 3):581-589.
- [27]Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL: A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J Mol Biol 2000, 296(5):1169-1173.
- [28]Panayotatos N, Fontaine A: A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. J Biol Chem 1987, 262(23):11364-11368.
- [29]Noirot P, Bargonetti J, Novick RP: Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin. Proc Natl Acad Sci USA 1990, 87(21):8560-8564.
- [30]Yamaguchi K, Yamaguchi M: The replication origin of pSC101: the nucleotide sequence and replication functions of the ori region. Gene 1984, 29(1-2):211-219.
- [31]Yahyaoui W, Callejo M, Price GB, Zannis-Hadjopoulos M: Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast. BMC Mol Biol 2007, 8:27. BioMed Central Full Text
- [32]Bell D, Sabloff M, Zannis-Hadjopoulos M, Price G: Anti-cruciform DNA affinity purification of active mammalian origins of replication. Biochim Biophys Acta 1991, 1089(3):299-308.
- [33]Zannis-Hadjopoulos M, Frappier L, Khoury M, Price GB: Effect of anti-cruciform DNA monoclonal antibodies on DNA replication. Embo J 1988, 7(6):1837-1844.
- [34]Alvarez D, Novac O, Callejo M, Ruiz MT, Price GB, Zannis-Hadjopoulos M: 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication. J Cell Biochem 2002, 87(2):194-207.
- [35]Callejo M, Alvarez D, Price GB, Zannis-Hadjopoulos M: The 14-3-3 protein homologues from Saccharomyces cerevisiae, Bmh1p and Bmh2p, have cruciform DNA-binding activity and associate in vivo with ARS307. J Biol Chem 2002, 277(41):38416-38423.
- [36]Haniford DB, Pulleyblank DE: Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res 1985, 13(12):4343-4363.
- [37]Hanke JH, Hambor JE, Kavathas P: Repetitive Alu elements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer. J Mol Biol 1995, 246(1):63-73.
- [38]Dayn A, Malkhosyan S, Mirkin SM: Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res 1992, 20(22):5991-5997.
- [39]Xu J, De Zhu J, Ni M, Wan F, Gu JR: The ATF/CREB site is the key element for transcription of the human RNA methyltransferase like 1(RNMTL1) gene, a newly discovered 17p13.3 gene. Cell Res 2002, 12(3-4):177-197.
- [40]Allers T, Leach DR: DNA palindromes adopt a methylation-resistant conformation that is consistent with DNA cruciform or hairpin formation in vivo. J Mol Biol 1995, 252(1):70-85.
- [41]Harada S, Uchida M, Shimizu N: Episomal high copy number maintenance of hairpin-capped DNA bearing a replication initiation region in human cells. J Biol Chem 2009, 284(36):24320-24327.
- [42]Cote AG, Lewis SM: Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol Cell 2008, 31(6):800-812.
- [43]Lilley DM, White MF: The junction-resolving enzymes. Nat Rev Mol Cell Biol 2001, 2(6):433-443.
- [44]Aravind L, Makarova KS, Koonin EV: SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 2000, 28(18):3417-3432.
- [45]Khuu PA, Voth AR, Hays FA, Ho PS: The stacked-X DNA Holliday junction and protein recognition. J Mol Recognit 2006, 19(3):234-242.
- [46]Lilley DM: Structures of helical junctions in nucleic acids. Q Rev Biophys 2000, 33(2):109-159.
- [47]Stefanovsky VY, Moss T: The cruciform DNA mobility shift assay: a tool to study proteins that recognize bent DNA. Methods Mol Biol 2009, 543:537-546.
- [48]Mazina OM, Rossi MJ, Thomaa NH, Mazin AV: Interactions of human rad54 protein with branched DNA molecules. J Biol Chem 2007, 282(29):21068-21080.
- [49]Naseem R, Webb M: Analysis of the DNA binding activity of BRCA1 and its modulation by the tumour suppressor p53. PLoS ONE 2008, 3(6):e2336.
- [50]Brazda V, Jagelska EB, Liao JC, Arrowsmith CH: The central region of BRCA1 binds preferentially to supercoiled DNA. J Biomol Struct Dyn 2009, 27(1):97-104.
- [51]Chasovskikh S, Dimtchev A, Smulson M, Dritschilo A: DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Cytometry A 2005, 68(1):21-27.
- [52]Poulet A, Buisson R, Faivre-Moskalenko C, Koelblen M, Amiard S, Montel F, Cuesta-Lopez S, Bornet O, Guerlesquin F, Godet T, et al.: TRF2 promotes, remodels and protects telomeric Holliday junctions. Embo J 2009, 28(6):641-651.
- [53]Shiba T, Iwasaki H, Nakata A, Shinagawa H: SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA. Proc Natl Acad Sci USA 1991, 88(19):8445-8449.
- [54]Iwasaki H, Takahagi M, Nakata A, Shinagawa H: Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev 1992, 6(11):2214-2220.
- [55]van Brabant AJ, Stan R, Ellis NA: DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 2000, 1:409-459.
- [56]Wakasugi M, Reardon JT, Sancar A: The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 1997, 272(25):16030-16034.
- [57]Stros M, Bacikova A, Polanska E, Stokrova J, Strauss F: HMGB1 interacts with human topoisomerase IIalpha and stimulates its catalytic activity. Nucleic Acids Res 2007, 35(15):5001-5013.
- [58]Klungland H, Andersen O, Kisen G, Alestrom P, Tora L: Estrogen receptor binds to the salmon GnRH gene in a region with long palindromic sequences. Mol Cell Endocrinol 1993, 95(1-2):147-154.
- [59]Benjamin RC, Gill DM: Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J Biol Chem 1980, 255(21):10502-10508.
- [60]Rouleau M, Aubin RA, Poirier GG: Poly(ADP-ribosyl)ated chromatin domains: access granted. J Cell Sci 2004, 117(Pt 6):815-825.
- [61]Tulin A, Chinenov Y, Spradling A: Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol 2003, 56:55-83.
- [62]Soldatenkov VA, Chasovskikh S, Potaman VN, Trofimova I, Smulson ME, Dritschilo A: Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences. J Biol Chem 2002, 277(1):665-670.
- [63]Lonskaya I, Potaman VN, Shlyakhtenko LS, Oussatcheva EA, Lyubchenko YL, Soldatenkov VA: Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J Biol Chem 2005, 280(17):17076-17083.
- [64]Dey A, Verma CS, Lane DP: Updates on p53: modulation of p53 degradation as a therapeutic approach. Br J Cancer 2008, 98(1):4-8.
- [65]Kim E, Rohaly G, Heinrichs S, Gimnopoulos D, Meissner H, Deppert W: Influence of promoter DNA topology on sequence-specific DNA binding and transactivation by tumor suppressor p53. Oncogene 1999, 18(51):7310-7318.
- [66]Brazda V, Jagelska EB, Fojta M, Palecek E: Searching for target sequences by p53 protein is influenced by DNA length. Biochem Biophys Res Commun 2006, 341(2):470-477.
- [67]Brazda V, Muller P, Brozkova K, Vojtesek B: Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem Biophys Res Commun 2006, 351(2):499-506.
- [68]Palecek E, Vlk D, Stankova V, Brazda V, Vojtesek B, Hupp TR, Schaper A, Jovin TM: Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene 1997, 15(18):2201-2209.
- [69]Brazda V, Palecek J, Pospisilova S, Vojtesek B, Palecek E: Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem Biophys Res Commun 2000, 267(3):934-939.
- [70]Degtyareva N, Subramanian D, Griffith JD: Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J Biol Chem 2001, 276(12):8778-8784.
- [71]Nagaich AK, Appella E, Harrington RE: DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J Biol Chem 1997, 272(23):14842-14849.
- [72]Stros M, Muselikova-Polanska E, Pospisilova S, Strauss F: High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry 2004, 43(22):7215-7225.
- [73]Subramanian D, Griffith JD: Modulation of p53 binding to Holliday junctions and 3-cytosine bulges by phosphorylation events. Biochemistry 2005, 44(7):2536-2544.
- [74]Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T: Mammalian telomeres end in a large duplex loop. Cell 1999, 97(4):503-514.
- [75]Jagelska EB, Brazda V, Pecinka P, Palecek E, Fojta M: DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem J 2008, 412(1):57-63.
- [76]Jagelska EB, Pivonkova H, Fojta M, Brazda V: The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem Biophys Res Commun 2010, 391(3):1409-1414.
- [77]Hede MS, Petersen RL, Frohlich RF, Kruger D, Andersen FF, Andersen AH, Knudsen BR: Resolution of Holliday junction substrates by human topoisomerase I. J Mol Biol 2007, 365(4):1076-1092.
- [78]Lee GE, Kim JH, Chung IK: Topoisomerase II-mediated DNA cleavage on the cruciform structure formed within the 5'upstream region of the human beta-globin gene. Mol Cells 1998, 8(4):424-430.
- [79]Heyer WD, Li X, Rolfsmeier M, Zhang XP: Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 2006, 34(15):4115-4125.
- [80]Bugreev DV, Mazina OM, Mazin AV: Rad54 protein promotes branch migration of Holliday junctions. Nature 2006, 442(7102):590-593.
- [81]Modesti M, Budzowska M, Baldeyron C, Demmers JA, Ghirlando R, Kanaar R: RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol Cell 2007, 28(3):468-481.
- [82]Kappes F, Burger K, Baack M, Fackelmayer FO, Gruss C: Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem 2001, 276(28):26317-26323.
- [83]Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R: The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin. Gene 2004, 343(1):1-9.
- [84]Waldmann T, Baack M, Richter N, Gruss C: Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res 2003, 31(23):7003-7010.
- [85]Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C: The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev 2000, 14(11):1308-1312.
- [86]Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C: Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol 2004, 24(13):6011-6020.
- [87]Kappes F, Scholten I, Richter N, Gruss C, Waldmann T: Functional domains of the ubiquitous chromatin protein DEK. Mol Cell Biol 2004, 24(13):6000-6010.
- [88]Bohm F, Kappes F, Scholten I, Richter N, Matsuo H, Knippers R, Waldmann T: The SAF-box domain of chromatin protein DEK. Nucleic Acids Res 2005, 33(3):1101-1110.
- [89]Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM: Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997, 90(3):425-435.
- [90]Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000, 10(15):886-895.
- [91]Sturdy A, Naseem R, Webb M: Purification and characterisation of a soluble N-terminal fragment of the breast cancer susceptibility protein BRCA1. J Mol Biol 2004, 340(3):469-475.
- [92]Paull TT, Cortez D, Bowers B, Elledge SJ, Gellert M: Direct DNA binding by Brca1. Proc Natl Acad Sci USA 2001, 98(11):6086-6091.
- [93]Naseem R, Sturdy A, Finch D, Jowitt T, Webb M: Mapping and conformational characterization of the DNA-binding region of the breast cancer susceptibility protein BRCA1. Biochem J 2006, 395(3):529-535.
- [94]De la Torre C, Pincheira J, Lopez-Saez JF: Human syndromes with genomic instability and multiprotein machines that repair DNA double-strand breaks. Histol Histopathol 2003, 18(1):225-243.
- [95]Banks GC, Li Y, Reeves R: Differential in vivo modifications of the HMGI(Y) nonhistone chromatin proteins modulate nucleosome and DNA interactions. Biochemistry 2000, 39(28):8333-8346.
- [96]Grasser KD, Teo SH, Lee KB, Broadhurst RW, Rees C, Hardman CH, Thomas JO: DNA-binding properties of the tandem HMG boxes of high-mobility-group protein 1 (HMG1). Eur J Biochem 1998, 253(3):787-795.
- [97]Agresti A, Bianchi ME: HMGB proteins and gene expression. Curr Opin Genet Dev 2003, 13(2):170-178.
- [98]Deckert J, Khalaf RA, Hwang SM, Zitomer RS: Characterization of the DNA binding and bending HMG domain of the yeast hypoxic repressor Rox1. Nucleic Acids Res 1999, 27(17):3518-3526.
- [99]Phillips NB, Nikolskaya T, Jancso-Radek A, Ittah V, Jiang F, Singh R, Haas E, Weiss MA: Sry-directed sex reversal in transgenic mice is robust with respect to enhanced DNA bending: comparison of human and murine HMG boxes. Biochemistry 2004, 43(22):7066-7081.
- [100]Dragan AI, Read CM, Makeyeva EN, Milgotina EI, Churchill ME, Crane-Robinson C, Privalov PL: DNA binding and bending by HMG boxes: energetic determinants of specificity. J Mol Biol 2004, 343(2):371-393.
- [101]Stros M, Polanska E, Struncova S, Pospisilova S: HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res 2009, 37(7):2070-2086.
- [102]Stefanovsky VY, Langlois F, Bazett-Jones D, Pelletier G, Moss T: ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF. Biochemistry 2006, 45(11):3626-3634.
- [103]Harrer M, Luhrs H, Bustin M, Scheer U, Hock R: Dynamic interaction of HMGA1a proteins with chromatin. J Cell Sci 2004, 117(Pt 16):3459-3471.
- [104]Boulikas T: Evolutionary consequences of nonrandom damage and repair of chromatin domains. J Mol Evol 1992, 35(2):156-180.
- [105]Kamashev D, Balandina A, Rouviere-Yaniv J: The binding motif recognized by HU on both nicked and cruciform DNA. Embo J 1999, 18(19):5434-5444.
- [106]Hertel L, De Andrea M, Bellomo G, Santoro P, Landolfo S, Gariglio M: The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Res 1999, 250(2):313-328.
- [107]JR P, Norman DG, Bramham J, Bianchi ME, Lilley DM: HMG box proteins bind to four-way DNA junctions in their open conformation. Embo J 1998, 17(3):817-826.
- [108]Assenberg R, Webb M, Connolly E, Stott K, Watson M, Hobbs J, Thomas JO: A critical role in structure-specific DNA binding for the acetylatable lysine residues in HMGB1. Biochem J 2008, 411(3):553-561.
- [109]Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M: Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 1996, 63(1):1-22.
- [110]Zannis-Hadjopoulos M, Yahyaoui W, Callejo M: 14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem Sci 2008, 33(1):44-50.
- [111]Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM: Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics 2008, 9:215. BioMed Central Full Text
- [112]Omberg L, Meyerson JR, Kobayashi K, Drury LS, Diffley JF, Alter O: Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression. Mol Syst Biol 2009, 5:312.
- [113]Bonnefoy E: The ribosomal S16 protein of Escherichia coli displaying a DNA-nicking activity binds to cruciform DNA. Eur J Biochem 1997, 247(3):852-859.
- [114]Linder B, Newman R, Jones LK, Debernardi S, Young BD, Freemont P, Verrijzer CP, Saha V: Biochemical analyses of the AF10 protein: the extended LAP/PHD-finger mediates oligomerisation. J Mol Biol 2000, 299(2):369-378.
- [115]Peterson CL: The SMC family: novel motor proteins for chromosome condensation? Cell 1994, 79(3):389-392.
- [116]Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR: The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J Biol Chem 2006, 281(48):36952-36959.
- [117]Hirano T: SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci 2005, 360(1455):507-514.
- [118]Akhmedov AT, Frei C, Tsai-Pflugfelder M, Kemper B, Gasser SM, Jessberger R: Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J Biol Chem 1998, 273(37):24088-24094.
- [119]Mikhailov VS, Rohrmann GF: Binding of the baculovirus very late expression factor 1 (VLF-1) to different DNA structures. BMC Mol Biol 2002, 3:14. BioMed Central Full Text
- [120]Aitken A: 14-3-3 proteins: a historic overview. Semin Cancer Biol 2006, 16(3):162-172.
- [121]Fu H, Subramanian RR, Masters SC: 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000, 40:617-647.
- [122]Zannis-Hadjopoulos M, Sibani S, Price GB: Eucaryotic replication origin binding proteins. Front Biosci 2004, 9:2133-2143.
- [123]Todd A, Cossons N, Aitken A, Price GB, Zannis-Hadjopoulos M: Human cruciform binding protein belongs to the 14-3-3 family. Biochemistry 1998, 37(40):14317-14325.
- [124]van Heusden GP, van der Zanden AL, Ferl RJ, Steensma HY: Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmh1 bmh2 double disruption. FEBS Lett 1996, 391(3):252-256.
- [125]Broeker PL, Harden A, Rowley JD, Zeleznik-Le N: The mixed lineage leukemia (MLL) protein involved in 11q23 translocations contains a domain that binds cruciform DNA and scaffold attachment region (SAR) DNA. Curr Top Microbiol Immunol 1996, 211:259-268.
- [126]Zeleznik-Le NJ, Harden AM, Rowley JD: 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci USA 1994, 91(22):10610-10614.
- [127]Ozgenc A, Loeb LA: Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 2005, 577(1-2):237-251.
- [128]Hanada K, Hickson ID: Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci 2007, 64(17):2306-2322.
- [129]Compton SA, Tolun G, Kamath-Loeb AS, Loeb LA, Griffith JD: The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer. J Biol Chem 2008, 283(36):24478-24483.
- [130]Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B: 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 1999, 401(6753):616-620.
- [131]Chu WK, Hickson ID: RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 2009, 9(9):644-654.
- [132]Jett SD, Cherny DI, Subramaniam V, Jovin TM: Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA. J Mol Biol 2000, 299(3):585-592.
- [133]Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H: Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. Embo J 1991, 10(13):4381-4389.
- [134]Biertumpfel C, Yang W, Suck D: Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 2007, 449(7162):616-620.
- [135]Pan PS, Curtis FA, Carroll CL, Medina I, Liotta LA, Sharples GJ, McAlpine SR: Novel antibiotics: C-2 symmetrical macrocycles inhibiting Holliday junction DNA binding by E. coli RuvC. Bioorg Med Chem 2006, 14(14):4731-4739.
- [136]Fogg JM, Schofield MJ, Declais AC, Lilley DM: Yeast resolving enzyme CCE1 makes sequential cleavages in DNA junctions within the lifetime of the complex. Biochemistry 2000, 39(14):4082-4089.
- [137]Garcia AD, Otero J, Lebowitz J, Schuck P, Moss B: Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase. J Biol Chem 2006, 281(17):11618-11626.
- [138]Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T: A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 2005, 435(7045):1059-1066.
- [139]Declais AC, Liu J, Freeman AD, Lilley DM: Structural recognition between a four-way DNA junction and a resolving enzyme. J Mol Biol 2006, 359(5):1261-1276.
- [140]Guan C, Kumar S: A single catalytic domain of the junction-resolving enzyme T7 endonuclease I is a non-specific nicking endonuclease. Nucleic Acids Res 2005, 33(19):6225-6234.
- [141]Hadden JM, Declais AC, Carr SB, Lilley DM, Phillips SE: The structural basis of Holliday junction resolution by T7 endonuclease I. Nature 2007, 449(7162):621-624.
- [142]Spiro C, McMurray CT: Switching of DNA secondary structure in proenkephalin transcriptional regulation. J Biol Chem 1997, 272(52):33145-33152.
- [143]Middleton CL, Parker JL, Richard DJ, White MF, Bond CS: Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Nucleic Acids Res 2004, 32(18):5442-5451.
- [144]Lyu YL, Lin CT, Liu LF: Inversion/dimerization of plasmids mediated by inverted repeats. J Mol Biol 1999, 285(4):1485-1501.
- [145]Giraud-Panis MJ, Lilley DM: Near-simultaneous DNA cleavage by the subunits of the junction-resolving enzyme T4 endonuclease VII. Embo J 1997, 16(9):2528-2534.
- [146]Macmaster R, Sedelnikova S, Baker PJ, Bolt EL, Lloyd RG, Rafferty JB: RusA Holliday junction resolvase: DNA complex structure--insights into selectivity and specificity. Nucleic Acids Res 2006, 34(19):5577-5584.
- [147]Owen BA, W HL, McMurray CT: The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nat Struct Mol Biol 2009, 16(5):550-557.
- [148]Surtees JA, Alani E: Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol 2006, 360(3):523-536.
- [149]Chang JH, Kim JJ, Choi JM, Lee JH, Cho Y: Crystal structure of the Mus81-Eme1 complex. Genes Dev 2008, 22(8):1093-1106.
- [150]Ehmsen KT, Heyer WD: Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res 2008, 36(7):2182-2195.
- [151]Taylor ER, McGowan CH: Cleavage mechanism of human Mus81-Eme1 acting on Holliday-junction structures. Proc Natl Acad Sci USA 2008, 105(10):3757-3762.
- [152]Fouche N, Cesare AJ, Willcox S, Ozgur S, Compton SA, Griffith JD: The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J Biol Chem 2006, 281(49):37486-37495.
- [153]Lee JH, Park CJ, Arunkumar AI, Chazin WJ, Choi BS: NMR study on the interaction between RPA and DNA decamer containing cis-syn cyclobutane pyrimidine dimer in the presence of XPA: implication for damage verification and strand-specific dual incision in nucleotide excision repair. Nucleic Acids Res 2003, 31(16):4747-4754.
- [154]Sekelsky JJ, Hollis KJ, Eimerl AI, Burtis KC, Hawley RS: Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutat Res 2000, 459(3):219-228.
- [155]Lee S, Cavallo L, Griffith J: Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem 1997, 272(11):7532-7539.
- [156]Ma B, Levine AJ: Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Res 2007, 35(22):7733-7747.
- [157]Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, Brill SJ: Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol 2005, 25(11):4476-4487.
- [158]Rass U, Kemper B: Crp1p, a new cruciform DNA-binding protein in the yeast Saccharomyces cerevisiae. J Mol Biol 2002, 323(4):685-700.
- [159]van Houte LP, Chuprina VP, van der Wetering M, Boelens R, Kaptein R, Clevers H: Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem 1995, 270(51):30516-30524.
- [160]Pearson CE, Ruiz MT, Price GB, Zannis-Hadjopoulos M: Cruciform DNA binding protein in HeLa cell extracts. Biochemistry 1994, 33(47):14185-14196.
- [161]Nakamura Y, Yoshioka K, Shirakawa H, Yoshida M: HMG box A in HMG2 protein functions as a mediator of DNA structural alteration together with box B. J Biochem 2001, 129(4):643-651.
- [162]Culard F, Gervais A, de Vuyst G, Spotheim-Maurizot M, Charlier M: Response of a DNA-binding protein to radiation-induced oxidative stress. J Mol Biol 2003, 328(5):1185-1195.
- [163]Tripathi P, Pal D, Muniyappa K: Saccharomyces cerevisiae Hop1 protein zinc finger motif binds to the Holliday junction and distorts the DNA structure: implications for holliday junction migration. Biochemistry 2007, 46(44):12530-12542.
- [164]Tripathi P, Anuradha S, Ghosal G, Muniyappa K: Selective binding of meiosis-specific yeast Hop1 protein to the holliday junctions distorts the DNA structure and its implications for junction migration and resolution. J Mol Biol 2006, 364(4):599-611.
- [165]Rene B, Fermandjian S, Mauffret O: Does topoisomerase II specifically recognize and cleave hairpins, cruciforms and crossovers of DNA? Biochimie 2007, 89(4):508-515.
- [166]Dip R, Naegeli H: More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. Faseb J 2005, 19(7):704-715.
- [167]Bonnefoy E, Takahashi M, Yaniv JR: DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J Mol Biol 1994, 242(2):116-129.
- [168]Pinson V, Takahashi M, Rouviere-Yaniv J: Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA. J Mol Biol 1999, 287(3):485-497.