BMC Neuroscience | |
Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome | |
Martijn P. van den Heuvel2  Leonard H. van den Berg1  Marcel A. de Reus2  Karl J. R. LaFleur1  Ruben Schmidt1  | |
[1] Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, Netherlands;Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, Netherlands | |
关键词: Perturbation; Suppression; Cortical coupling; Neural synchronization; Structural connectivity; Hub node; | |
Others : 1232536 DOI : 10.1186/s12868-015-0193-z |
|
received in 2014-12-19, accepted in 2015-08-14, 发布年份 2015 |
【 摘 要 】
Background
The topological structure of the wiring of the mammalian brain cortex plays an important role in shaping the functional dynamics of large-scale neural activity. Due to their central embedding in the network, high degree hub regions and their connections (often referred to as the ‘rich club’) have been hypothesized to facilitate intermodular neural communication and global integration of information by means of synchronization. Here, we examined the theoretical role of anatomical hubs and their wiring in brain dynamics. The Kuramoto model was used to simulate interaction of cortical brain areas by means of coupled phase oscillators—with anatomical connections between regions derived from diffusion weighted imaging and module assignment of brain regions based on empirically determined resting-state data.
Results
Our findings show that synchrony among hub nodes was higher than any module’s intramodular synchrony (p < 10 −4 , for cortical coupling strengths, λ, in the range 0.02 < λ < 0.05), suggesting that hub nodes lead the functional modules in the process of synchronization. Furthermore, suppressing structural connectivity among hub nodes resulted in an elevated modular state (p < 4.1 × l0 −3 , 0.015 < λ < 0.04), indicating that hub-to-hub connections are critical in intermodular synchronization. Finally, perturbing the oscillatory behavior of hub nodes prevented functional modules from synchronizing, implying that synchronization of functional modules is dependent on the hub nodes’ behavior.
Conclusion
Our results converge on anatomical hubs having a leading role in intermodular synchronization and integration in the human brain.
【 授权许可】
2015 Schmidt et al.
Files | Size | Format | View |
---|---|---|---|
Fig.6. | 56KB | Image | download |
Fig.5. | 37KB | Image | download |
Fig.4. | 31KB | Image | download |
Fig.3. | 32KB | Image | download |
Fig.2. | 105KB | Image | download |
Fig.1. | 153KB | Image | download |
Fig.6. | 56KB | Image | download |
Fig.5. | 37KB | Image | download |
Fig.4. | 31KB | Image | download |
Fig.3. | 32KB | Image | download |
Fig.2. | 105KB | Image | download |
Fig.1. | 153KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
【 参考文献 】
- [1]Kaiser M, Varier S: Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. Netw Comput Neural Syst 2011, 22:143-147.
- [2]Van den Heuvel MP, Sporns O: Rich-club organization of the human connectome. J Neurosci 2011, 31:15775-15786.
- [3]Gómez-Gardeñes J, Zamora-López G, Moreno Y, Arenas A: From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex. PLoS One 2010, 5:e12313.
- [4]Kreiter AK, Singer W: Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci 1996, 76:2381-2396.
- [5]Lachaux JP, Rodriguez E, Martinerie J, Varela FJ: Measuring phase synchrony in brain signals. Hum Brain Mapp 1999, 8:194-208.
- [6]Engel AK, Fries P, Singer W: Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2001, 2:704-716.
- [7]Uhlhaas PJ, Singer W: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006, 52:155-168.
- [8]Uhlhaas PJ, Singer W: Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 2010, 11:100-113.
- [9]Ponce-Alvarez A, Deco G, Hagmann P, Romani GL, Mantini D, Corbetta M: Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity. PLoS Comput Biol 2015, 11:e1004100.
- [10]Tononi G, Edelman GM, Sporns O: Complexity and coherency: integrating information in the brain. Trends Cogn Sci. 1998, 2(12):474-484.
- [11]Sporns O, Gally JA, Reeke GN, Edelman GM: Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci USA 1989, 86:7265-7269.
- [12]Singer W, Engel AK, Kreiter AK, Munk MH, Neuenschwander S, Roelfsema PR: Neuronal assemblies: necessity, signature and detectability. Trends Cogn Sci 1997, 1:252-261.
- [13]Honey CJ, Kötter R, Breakspear M, Sporns O: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 2007, 104:10240-10245.
- [14]Cabral J, Hugues E, Sporns O, Deco G: Role of local network oscillations in resting-state functional connectivity. Neuroimage 2011, 57:130-139.
- [15]Kaiser M, Hilgetag CC: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2006, 2:e95.
- [16]Van den Heuvel MP, Sporns O: An anatomical substrate for integration among functional networks in human cortex. J Neurosci 2013, 33:14489-14500.
- [17]Towlson EK, Vértes PE, Ahnert SE, Schafer WR, Bullmore ET: The rich club of the C. elegans neuronal connectome. J Neurosci 2013, 33:6380-6387.
- [18]Shanahan M: The brain’s connective core and its role in animal cognition. Philos Trans R Soc Lond B Biol Sci 2012, 367:2704-2714.
- [19]Zamora-López G, Zhou C, Kurths J: Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos 2009, 19:015117.
- [20]Harriger L, van den Heuvel MP, Sporns O: Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One 2012, 7:e46497.
- [21]Kuramoto Y: Chemical Oscillations, Waves, and Turbulance. Springer-Verlag, Berlin; 1984.
- [22]Honey CJ, Sporns O: Dynamical consequences of lesions in cortical networks. Hum Brain Mapp 2008, 29:802-809.
- [23]Kitzbichler MG, Smith ML, Christensen SR, Bullmore E: Broadband criticality of human brain network synchronization. PLoS Comput Biol 2009, 5:e1000314.
- [24]Cabral J, Kringelbach ML, Deco G: Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol 2014, 114:102-131.
- [25]Villegas P, Moretti P, Muñoz MA: Frustrated hierarchical synchronization and emergent complexity in the human connectome network. Sci Rep 2014, 4:5990.
- [26]Vuksanović V, Hövel P: Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. Neuroimage 2014, 97:1-8.
- [27]Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O: Modeling the impact of lesions in the human brain. PLoS Comput Biol 2009, 5:e1000408.
- [28]Cabral J, Hugues E, Kringelbach ML, Deco G: Modeling the outcome of structural disconnection on resting-state functional connectivity. Neuroimage 2012, 62:1342-1353.
- [29]Van den Heuvel MP, Kahn RS, Goñi J, Sporns O: High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA 2012, 109:11372-11377.
- [30]Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KQ, Maeder P, Meuli R, Hagmann P: Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci Methods 2012, 203:386-397.
- [31]de Reus MA, Van den Heuvel MP: Estimating false positives and negatives in brain networks. Neuroimage 2013, 70:402-409.
- [32]Beckmann CF, DeLuca M, Devlin JT, Smith SM: Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005, 360:1001-1013.
- [33]Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF: Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006, 103:13848-13853.
- [34]Greicius MD, Krasnow B, Reiss AL, Menon V: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003, 100:253-258.
- [35]Van den Heuvel M, Mandl R, Pol HH: Normalized cut group clustering of resting-state fMRI data. PLoS One. 2008, 3(4):e2001.
- [36]Van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RCW, Cahn W, Goni J, Hulshoff Pol HE, Kahn RS: Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA. Psychiatry. 2013, 70(8):783-92.
- [37]Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kötter R: Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol Sci. 2001, 356:1159-1186.
- [38]Felleman DJ, Van Essen DC: Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1991, 1:1-47.
- [39]Rubinov M, Sporns O: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010, 52:1059-1069.
- [40]Brede M: Locals vs. global synchronization in networks of non-identical Kuramoto oscillators. Eur Phys J B. 2008, 62:87-94.
- [41]Breakspear M, Heitmann S, Daffertshofer A: Generative models of cortical oscillations: neurobiological implications of the kuramoto model. Front Hum Neurosci 2010, 4(November):190.
- [42]de Reus MA, van den Heuvel MP: Simulated rich club lesioning in brain networks: a scaffold for communication and integration? Front Hum Neurosci 2014, 8(3):1-5.
- [43]Van den Heuvel MP, Mandl RCW, Kahn RS: Hulshoff Pol HE: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009, 30:3127-3141.
- [44]Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P: Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 2009, 106:1-6.
- [45]Honey CJ, Thivierge J-P, Sporns O: Can structure predict function in the human brain? Neuroimage 2010, 52:766-776.
- [46]Dereus MA, Vandenheuvel MP: Rich club organization and intermodule communication in the cat connectome. J Neurosci. 2013, 33:12929-12939.
- [47]Miranda-Dominguez O, Mills BD, Grayson D, Woodall A, Grant KA, Kroenke CD, Fair DA: Bridging the gap between the human and macaque connectome: a quantitative comparison of global interspecies structure-function relationships and network topology. J Neurosci 2014, 34:5552-5563.
- [48]Nicosia V, Valencia M, Chavez M, Díaz-Guilera A, Latora V: Remote synchronization reveals network symmetries and functional modules. Phys Rev Lett 2013, 110:174102.
- [49]Senden M, Deco G, de Reus MA, Goebel R, van den Heuvel MP. Rich Club organization supports a diverse set of functional network configurations. Neuroimage. 2014;96:174–82.
- [50]Zhou C, Zemanová L, Zamora G, Hilgetag C, Kurths J: Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 2006, 97:238103.
- [51]Arenas A, Díaz-Guilera A, Pérez-Vicente C: Synchronization reveals topological scales in complex networks. Phys Rev Lett 2006, 96:114102.
- [52]Dehaene S, Kerszberg M, Changeux JP: A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 1998, 95:14529-14534.
- [53]Deco G, Senden M, Jirsa V: How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front Comput Neurosci 2012, 6(September):68.
- [54]Van den Heuvel MP, Sporns O: Network hubs in the human brain. Trends Cogn Sci 2013, 17:683-696.
- [55]Scholtens LH, Schmidt R, de Reus MA, van den Heuvel MP: Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J Neurosci. 2014, 34(36):12192-205.