期刊论文详细信息
BMC Neuroscience
NeuroDNet - an open source platform for constructing and analyzing neurodegenerative disease networks
James Gomes2  Bhyravabhotla Jayaram1  Aditya K Padhi2  Suhas V Vasaikar2 
[1] Supercomputing Facility for Bioinformatics & Computational Biology, New Delhi, 110016, India;Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Block 1A, Room No. 307, Hauz Khas, New Delhi 110016, India
关键词: Systems analysis;    Boolean network;    Protein-Protein interaction network;    Disease gene network;    Neurodegenerative diseases;   
Others  :  1140614
DOI  :  10.1186/1471-2202-14-3
 received in 2012-08-17, accepted in 2012-12-13,  发布年份 2013
PDF
【 摘 要 】

Background

Genetic networks control cellular functions. Aberrations in normal cellular function are caused by mutations in genes that disrupt the fine tuning of genetic networks and cause disease or disorder. However, the large number of signalling molecules, genes and proteins that constitute such networks, and the consequent complexity of interactions, has restrained progress in research elucidating disease mechanisms. Hence, carrying out a systematic analysis of how diseases alter the character of these networks is important. We illustrate this through our work on neurodegenerative disease networks. We created a database, NeuroDNet, which brings together relevant information about signalling molecules, genes and proteins, and their interactions, for constructing neurodegenerative disease networks.

Description

NeuroDNet is a database with interactive tools that enables the creation of interaction networks for twelve neurodegenerative diseases under one portal for interrogation and analyses. It is the first of its kind, which enables the construction and analysis of neurodegenerative diseases through protein interaction networks, regulatory networks and Boolean networks. The database has a three-tier architecture - foundation, function and interface. The foundation tier contains the human genome data with 23857 protein-coding genes linked to more than 300 genes reported in clinical studies of neurodegenerative diseases. The database architecture was designed to retrieve neurodegenerative disease information seamlessly through the interface tier using specific functional information. Features of this database enable users to extract, analyze and display information related to a disease in many different ways.

Conclusions

The application of NeuroDNet was illustrated using three case studies. Through these case studies, the construction and analyses of a PPI network for angiogenin protein in amyotrophic lateral sclerosis, a signal-gene-protein interaction network for presenilin protein in Alzheimer's disease and a Boolean network for a mammalian cell cycle was demonstrated. NeuroDNet is accessible at http://bioschool.iitd.ac.in/NeuroDNet/ webcite.

【 授权许可】

   
2013 Vasaikar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325070001717.pdf 2240KB PDF download
Figure 4. 73KB Image download
Figure 3. 95KB Image download
Figure 2. 92KB Image download
Figure 1. 140KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30:572-580.
  • [2]Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bähler J, Wood V, Dolinski K, Tyers M: The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 2008, 36:D637-D640.
  • [3]Ceol A, ChatrAryamontri A, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G: MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 2010, 38:D532-D539.
  • [4]Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D’Eustachio P, Stein L: Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011, 39:D691-D697.
  • [5]Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, Guillier F, Janssens H, Ji W, Mclaren P, North P, Rana D, Riley T, Sullivan J, Watkins X, Woodbridge M, Lilley K, Russell S, Ashburner M, Mizuguchi K, Micklem G: FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biol 2007, 8:R129. BioMed Central Full Text
  • [6]Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A: BioMart Central Portal–unified access to biological data. Nucleic Acids Res 2009, 37:W23-W27.
  • [7]Ghosh S, Matsuoka Y, Asai Y, Hsin KY, Kitano H: Software for systems biology: from tools to integrated platforms. Nat Rev Genet 2011, 12:821-832.
  • [8]Klingström T, Plewczynski D: Protein-protein interaction and pathway databases, a graphical review. Brief Bioinform 2011, 12:702-713.
  • [9]Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007, 39:17-23.
  • [10]Yang JO, Kim WY, Jeong SY, Oh JH, Jho S, Bhak J, Kim NS: PDbase: a database of Parkinson’s disease-related genes and genetic variation using substantianigra ESTs. BMC Genomics 2009, 10(Suppl 3):S32. BioMed Central Full Text
  • [11]Yoshida M, Takahashi Y, Koike A, Fukuda Y, Goto J, Tsuji S: A mutation database for amyotrophic lateral sclerosis. Hum Mutat 2010, 31:1003-1010.
  • [12]Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL: The human disease network. Proc Natl Acad Sci U S A 2007, 104:8685-8690.
  • [13]Ideker T, Sharan R: Protein networks in disease. Genome Res 2008, 18:644-652.
  • [14]Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, Wu W, Uitdehaag BM, Kappos L, Polman CH, Matthews PM, Hauser SL, Gibson RA, Oksenberg JR, Barnes MR, GeneMSA Consortium: Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009, 18:2078-2090.
  • [15]Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B, Baxter D, Pitstick R, Young R, Spicer D, Price ND, Hohmann JG, Dearmond SJ, Carlson GA, Hood LE: A systems approach to prion disease. Mol Syst Biol 2009, 5:252.
  • [16]Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Büssow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE: A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell 2004, 15:853-865.
  • [17]Limviphuvadh V, Tanaka S, Goto S, Ueda K, Kanehisa M: The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs). Bioinformatics 2007, 23:2129-2138.
  • [18]Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC, Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M, et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003, 13:2363-2371.
  • [19]Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004, 32:D449-D451.
  • [20]Ahmed SS, Ahameethunisa AR, Santosh W, Chakravarthy S, Kumar S: Systems biological approach on neurological disorders: a novel molecular connectivity to aging and psychiatric diseases. BMC Syst Biol 2011, 5:6. BioMed Central Full Text
  • [21]Kishikawa H, Wu D, Hu GF: Targeting angiogenin in therapy of amyotropic lateral sclerosis. Expert Opin Ther Targets 2008, 12:1229-1242.
  • [22]Padhi AK, Kumar H, Vasaikar SV, Jayaram B, Gomes J: Mechanisms of loss of functions of human angiogenin variants implicated in amyotrophic lateral sclerosis. PLoS One 2012, 7:e32479.
  • [23]Ahn EH, Kang DK, Chang SI, Kang CS, Han MH, Kang IC: Profiling of differential protein expression in angiogenin-induced HUVECs using antibody-arrayed ProteoChip. Proteomics 2006, 6:1104-1109.
  • [24]Tandon A, Fraser P: The presenilins. Genome Biol 2002, 3:3014. 1–9
  • [25]Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS: Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 1996, 17:1005-1013.
  • [26]Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S: Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 1997, 89:629-639.
  • [27]Handler M, Yang X, Shen J: Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 2000, 127:2593-2606.
  • [28]Presente A, Boyles RS, Serway CN, de Belle JS, Andres AJ: Notch is required for long-term memory in Drosophila. Proc Natl Acad Sci U S A 2004, 101:1764-1768.
  • [29]Marhl M, Haberichter T, Brumen M, Heinrich R: Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems 2000, 57:75-86.
  • [30]Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P: Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci U S A 2011, 108:2777-2782.
  • [31]Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998, 280:1763-1766.
  • [32]Ichas F, Mazat JP: From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1998, 1366:33-50.
  • [33]Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M: Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006, 40:553-560.
  • [34]Simon SM, Blobel G: A protein-conducting channel in the endoplasmic reticulum. Cell 1991, 65:371-380.
  • [35]Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I: Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 2006, 126:981-993.
  • [36]Hofer AM, Curci S, Machen TE, Schulz I: ATP regulates calcium leak from agonist-sensitive internal calcium stores. FASEB J 1996, 10:302-308.
  • [37]Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H: Uncoupled IP3 receptor can function as a Ca2 + −leak channel: cell biological and pathological consequences. Biol Cell 2006, 98:1-14.
  • [38]Camello C, Lomax R, Petersen OH, Tepikin AV: Calcium leak from intracellular stores–the enigma of calcium signalling. Cell Calcium 2002, 32:355-361.
  • [39]Polynikis A, Hogan SJ, di Bernardo M: Comparing different ODE modelling approaches for gene regulatory networks. J Theor Biol 2009, 261:511-530.
  • [40]Gupta S, Bisht SS, Kukreti R, Jain S, Brahmachari SK: Boolean network analysis of a neurotransmitter signaling pathway. J Theor Biol 2007, 244:463-469.
  • [41]Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 24:1917-1925.
  • [42]Schlatter R, Schmich K, Avalos Vizcarra I, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O: ON/OFF and beyond--a boolean model of apoptosis. PLoS Comput Biol 2009, 5:e1000595.
  • [43]Glass L, Kauffman SA: The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 1973, 39:103-129.
  • [44]Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for life scientists. Source Code Biol Med 2008, 3:16. BioMed Central Full Text
  • [45]Devloo V, Hansen P, Labbe M: Identification of all steady states in large networks by logical analysis. Bull Math Biol 2003, 65:1025-1051.
  • [46]Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S A 2004, 101:4781-4786.
  • [47]Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinforma 2006, 7:56. BioMed Central Full Text
  • [48]Humphries MD, Gurney K: Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 2008, 3:e0002051.
  • [49]Ay F, Xu F, Kahveci T: Scalable steady state analysis of Boolean biological regulatory networks. PLoS One 2009, 4:e7992.
  • [50]Mendoza L, Thieffry D, Alvarez-Buylla ER: Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 1999, 15:593-606.
  • [51]Mendoza L: A network model for the control of the differentiation process in Th cells. Biosystems 2006, 84:101-114.
  • [52]Davidich MI, Bornholdt S: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 2008, 3:e1672.
  • [53]Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr: Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci U S A 2008, 105:16308-16313.
  • [54]Fauré A, Naldi A, Chaouiya C, Thieffry D: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 2006, 22:e124-e131.
  • [55]Herrup K, Yang Y: Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 2007, 8:368-378.
  • [56]Novak B, Tyson JJ: A model for restriction point control of the mammalian cell cycle. J Theor Biol 2004, 230:563-579.
  文献评价指标  
  下载次数:86次 浏览次数:39次