期刊论文详细信息
BMC Microbiology
Role of N-terminal protein formylation in central metabolic processes in Staphylococcus aureus
Andreas Peschel1  Michael Lalk3  Friedrich Götz2  Martina Leibig2  Karen Methling3  Volker Winstel1  Manuel Liebeke4  Diana Mader1 
[1] Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cellular and Molecular Microbiology, University of Tübingen, Elfriede-Aulhorn-Straße 6, 72076, Tübingen, Germany;Interfaculty Institute of Microbiology and Infection Medicine, Microbial Genetics, University Tübingen, Waldhäuser Strasse 70/8, Tübingen, 72076, Germany;Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn Straße 17, 17487, Greifswald, Germany;Current address: Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
关键词: pyruvate dehydrogenase;    Staphylococcus;    Bacterial metabolism;    Protein formylation;   
Others  :  1144607
DOI  :  10.1186/1471-2180-13-7
 received in 2012-05-10, accepted in 2013-01-11,  发布年份 2013
PDF
【 摘 要 】

Background

Bacterial protein biosynthesis usually depends on a formylated methionyl start tRNA but Staphylococcus aureus is viable in the absence of Fmt, the tRNAMet formyl transferase. fmt mutants exhibit reduced growth rates indicating that the function of certain proteins depends on formylated N-termini but it has remained unclear, which cellular processes are abrogated by the lack of formylation.

Results

In order to elucidate how global metabolic processes are affected by the absence of formylated proteins the exometabolome of an S. aureus fmt mutant was compared with that of the parental strain and the transcription of corresponding enzymes was analyzed to identify possible regulatory changes. The mutant consumed glucose and other carbon sources slower than the wild type. While the turnover of several metabolites remained unaltered fmt inactivation led to increases pyruvate release and, concomitantly, reduced pyruvate dehydrogenase activity. In parallel, the release of the pyruvate-derived metabolites lactate, acetoin, and alanine was reduced. The anaerobic degradation of arginine was also reduced in the fmt mutant compared to the wild-type strain. Moreover, the lack of formylated proteins caused increased susceptibility to the antibiotics trimethoprim and sulamethoxazole suggesting that folic acid-dependant pathways were perturbed in the mutant.

Conclusions

These data indicate that formylated proteins are crucial for specific bacterial metabolic processes and they may help to understand why it has remained important during bacterial evolution to initiate protein biosynthesis with a formylated tRNAMet.

【 授权许可】

   
2013 Mader et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330202958585.pdf 2519KB PDF download
Figure 4. 50KB Image download
Figure 3. 104KB Image download
Figure 2. 141KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Clark BF, Marcker KA: The role of N-formyl-methionyl-sRNA in protein biosynthesis. J Mol Biol 1966, 17(2):394-406.
  • [2]Anderson WF, Bosch L, Gros F, Grunberg-Manago M, Ochoa S, Rich A, Staehelin T: Initiation of protein synthesis in prokaryotic and eukaryotic systems. Summary of EMBO Workshop. FEBS Lett 1974, 48(1):1-6.
  • [3]Newton DT, Creuzenet C, Mangroo D: Formylation is not essential for initiation of protein synthesis in all eubacteria. J Biol Chem 1999, 274(32):22143-22146.
  • [4]Margolis PS, Hackbarth CJ, Young DC, Wang W, Chen D, Yuan Z, White R, Trias J: Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. AntimicrobAgents Chemother 2000, 44:1825-1831.
  • [5]Fu H, Karlsson J, Bylund J, Movitz C, Karlsson A, Dahlgren C: Ligand recognition and activation of formyl peptide receptors in neutrophils. J Leukoc Biol 2006, 79(2):247-256.
  • [6]Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM: International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009, 61(2):119-161.
  • [7]Dürr MC, Kristian SA, Otto M, Matteoli G, Margolis PS, Trias J, Van Kessel KP, Van Strijp JA, Bohn E, Landmann R, et al.: Neutrophil chemotaxis by pathogen-associated molecular patterns–formylated peptides are crucial but not the sole neutrophil attractants produced by Staphylococcus aureus. Cell Microbiol 2006, 8(2):207-217.
  • [8]Mader D, Rabiet MJ, Boulay F, Peschel A: Formyl peptide receptor-mediated proinflammatory consequences of peptide deformylase inhibition in Staphylococcus aureus. Microbes Infect 2010, 12(5):415-419.
  • [9]de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, Van Strijp JA: Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J ExpMed 2004, 199(5):687-695.
  • [10]Adams JM, Capecchi MR: N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc Natl Acad Sci U S A 1966, 55(1):147-155.
  • [11]Leibig M, Liebeke M, Mader D, Lalk M, Peschel A, Gotz F: Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. J Bacteriol 2011, 193(4):952-962.
  • [12]Mazel D, Pochet S, Marliere P: Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J 1994, 13(4):914-923.
  • [13]Leeds JA, Dean CR: Peptide deformylase as an antibacterial target: a critical assessment. Curr Opin Pharmacol 2006, 6(5):445-452.
  • [14]Hu YJ, Wei Y, Zhou Y, Rajagopalan PT, Pei D: Determination of substrate specificity for peptide deformylase through the screening of a combinatorial peptide library. Biochemistry 1999, 38(2):643-650.
  • [15]Bandow JE, Becher D, Buttner K, Hochgrafe F, Freiberg C, Brotz H, Hecker M: The role of peptide deformylase in protein biosynthesis: a proteomic study. Proteomics 2003, 3(3):299-306.
  • [16]Guillon JM, Mechulam Y, Schmitter JM, Blanquet S, Fayat G: Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J Bacteriol 1992, 174:4294-4301.
  • [17]Somerville GA, Said-Salim B, Wickman JM, Raffel SJ, Kreiswirth BN, Musser JM: Correlation of acetate catabolism and growth yield in Staphylococcus aureus: implications for host-pathogen interactions. InfectImmun 2003, 71(8):4724-4732.
  • [18]Pagels M, Fuchs S, Pane-Farre J, Kohler C, Menschner L, Hecker M, McNamarra PJ, Bauer MC, von Wachenfeldt C, Liebeke M, et al.: Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus. Mol Microbiol 2010, 76(5):1142-1161.
  • [19]Galkin A, Kulakova L, Sarikaya E, Lim K, Howard A, Herzberg O: Structural insight into arginine degradation by arginine deiminase, an antibacterial and parasite drug target. J Biol Chem 2004, 279(14):14001-14008.
  • [20]Hitchings GH: Mechanism of action of trimethoprim-sulfamethoxazole. I. J Infect Dis 1973, 128(Suppl):433-436.
  • [21]Birkenstock T, Liebeke M, Winstel V, Krismer B, Gekeler C, Niemiec MJ, Bisswanger H, Lalk M, Peschel A: Exometabolome analysis identifies pyruvate dehydrogenase as a target for the antibiotic triphenylbismuthdichloride in multiresistant bacterial pathogens. J Biol Chem 2012, 287(4):2887-2895.
  • [22]Liebeke M, Brozel VS, Hecker M, Lalk M: Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl Microbiol Biotechnol 2009, 83(1):161-173.
  文献评价指标  
  下载次数:50次 浏览次数:20次