期刊论文详细信息
BMC Evolutionary Biology
Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms)
Hervé Sauquet1  Thomas LP Couvreur2  Julien Massoni1 
[1] Laboratoire Ecologie, Systématique, Evolution, Université Paris-Sud, CNRS UMR 8079, Orsay, 91405, France;Département des Sciences Biologiques, Université de Yaoundé I, Ecole Normale Supérieure, Laboratoire de Botanique systématique et d’Ecologie, Yaoundé, B.P. 047, Cameroon
关键词: Extinction;    Speciation;    Diversification;    Molecular dating;    Magnoliidae;    Angiosperms;   
Others  :  1158252
DOI  :  10.1186/s12862-015-0320-6
 received in 2014-10-10, accepted in 2015-02-24,  发布年份 2015
PDF
【 摘 要 】

Background

With 10,000 species, Magnoliidae are the largest clade of flowering plants outside monocots and eudicots. Despite an ancient and rich fossil history, the tempo and mode of diversification of Magnoliidae remain poorly known. Using a molecular data set of 12 markers and 220 species (representing >75% of genera in Magnoliidae) and six robust, internal fossil age constraints, we estimate divergence times and significant shifts of diversification across the clade. In addition, we test the sensitivity of magnoliid divergence times to the choice of relaxed clock model and various maximum age constraints for the angiosperms.

Results

Compared with previous work, our study tends to push back in time the age of the crown node of Magnoliidae (178.78-126.82 million years, Myr), and of the four orders, Canellales (143.18-125.90 Myr), Piperales (158.11-88.15 Myr), Laurales (165.62-112.05 Myr), and Magnoliales (164.09-114.75 Myr). Although families vary in crown ages, Magnoliidae appear to have diversified into most extant families by the end of the Cretaceous. The strongly imbalanced distribution of extant diversity within Magnoliidae appears to be best explained by models of diversification with 6 to 13 shifts in net diversification rates. Significant increases are inferred within Piperaceae and Annonaceae, while the low species richness of Calycanthaceae, Degeneriaceae, and Himantandraceae appears to be the result of decreases in both speciation and extinction rates.

Conclusions

This study provides a new time scale for the evolutionary history of an important, but underexplored, part of the tree of angiosperms. The ages of the main clades of Magnoliidae (above the family level) are older than previously thought, and in several lineages, there were significant increases and decreases in net diversification rates. This study is a new robust framework for future investigations of trait evolution and of factors influencing diversification in this group as well as angiosperms as a whole.

【 授权许可】

   
2015 Massoni et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150408010341901.pdf 892KB PDF download
Figure 3. 130KB Image download
Figure 2. 107KB Image download
Figure 1. 134KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, et al.: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A 2009, 106:13410-4.
  • [2]Cantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG, Soltis DE, et al.: Towards a phylogenetic nomenclature of Tracheophyta. Taxon 2007, 56:E1-44.
  • [3]Gottsberger G: How diverse are Annonaceae with regard to pollination? Bot J Linn Soc 2012, 169:245-61.
  • [4]Condamine FL, Sperling FAH, Wahlberg N, Rasplus J-Y, Kergoat GJ: What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol Lett 2012, 15:267-77.
  • [5]Ayyappan N, Parthasarathy N: Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers Conserv 1999, 8:1533-54.
  • [6]Pitman NCA, Terborgh JW, Silman MR, Núñez VP, Neill DA, Cerón CE, et al.: Dominance and distribution of tree species in upper Amazonian Terra Firme forests. Ecology 2001, 82:2101-17.
  • [7]McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD: Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci U S A 2009, 106:7083-8.
  • [8]Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogburn RM, et al.: Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc Natl Acad Sci U S A 2011, 108:8379-84.
  • [9]Van der Niet T, Johnson SD: Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol Evol 2012, 27:353-61.
  • [10]Vamosi JC, Vamosi SM: Factors influencing diversification in angiosperms: at the crossroads of intrinsic and extrinsic traits. Am J Bot 2011, 98:460-71.
  • [11]Thien LB, Azuma H, Kawano S: New perspectives on the pollination biology of basal angiosperms. Curr Perspect Basal Angiosperms 2000, 161(Suppl 6):225-35.
  • [12]Bell CD, Soltis DE, Soltis PS: The age of the angiosperms: a molecular timescale without a clock. Evolution 2005, 59:1245-58.
  • [13]Magallón SA: Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst Biol 2010, 59:384-99.
  • [14]Magallón SA, Castillo A: Angiosperm diversification through time. Am J Bot 2009, 96:349-65.
  • [15]Wikström N, Savolainen V, Chase MW: Evolution of the angiosperms: calibrating the family tree. Proc R Soc B 2001, 268:2211-20.
  • [16]Naumann J, Salomo K, Der JP, Wafula EK, Bolin JF, Maass E, et al. Single-copy nuclear genes place haustorial Hydnoraceae within Piperales and reveal a Cretaceous origin of multiple parasitic angiosperm lineages. PLoS One. 2013. doi:10.1371/journal.pone.0079204.
  • [17]Zhou S, Renner SS, Wen J: Molecular phylogeny and intra- and intercontinental biogeography of Calycanthaceae. Mol Phylogenet Evol 2006, 39:1-15.
  • [18]Renner SS: Variation in diversity among laurales, early cretaceous to present. Biol Skr Det K Danske Vidensk Selsk 2004, 55:441-58.
  • [19]Doyle JA, Sauquet H, Scharaschkin T, Le Thomas A: Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). Int J Plant Sci 2004, 165:55-67.
  • [20]Pirie MD, Doyle JA: Dating clades with fossils and molecules: the case of Annonaceae. Bot J Linn Soc 2012, 169:84-116.
  • [21]Smith SA, Beaulieu JM, Donoghue MJ: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci U S A 2010, 107:5897-902.
  • [22]Magallón SA, Hilu KW, Quandt D: Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 2013, 100:556-73.
  • [23]Forest F, Chase MW: Magnoliids. In Time tree life. Edited by Hedges SB, Kumar S. Oxford University Press, Oxford, UK; 2009:166-8.
  • [24]Magallón SA, Sanderson MJ: Absolute diversification rates in angiosperm clades. Evolution 2001, 55:1762-80.
  • [25]Erkens RHJ, Chatrou LW, Couvreur TLP: Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales). Bot J Linn Soc 2012, 169:117-34.
  • [26]Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, Richardson JE, et al.: Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. J Biogeogr 2011, 38:664-80.
  • [27]Qiu Y-L, Dombrovska O, Lee J, Li L, Whitlock BA, Bernasconi-Quadroni F, et al.: Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. Int J Plant Sci 2005, 166:815-42.
  • [28]Graham SW, Olmstead RG: Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am J Bot 2000, 87:1712-30.
  • [29]Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, et al.: Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 2011, 98:704-30.
  • [30]Zanis MJ, Soltis DE, Soltis PS, Mathews S, Donoghue MJ: The root of the angiosperms revisited. Proc Natl Acad Sci U S A 2002, 99:6848-53.
  • [31]Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, et al.: Angiosperm phylogeny based on matK sequence information. Am J Bot 2003, 90:1758-76.
  • [32]Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci U S A 2010, 107:4623-8.
  • [33]Massoni J, Forest F, Sauquet H: Increased sampling of both genes and taxa improves resolution of phylogenetic relationships within Magnoliidae, a large and early-diverging clade of angiosperms. Mol Phylogenet Evol 2014, 70:84-93.
  • [34]Sauquet H, Doyle JA, Scharaschkin T, Borsch T, Hilu KW, Chatrou LW, et al.: Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Bot J Linn Soc 2003, 142:125-86.
  • [35]Renner SS: Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Am J Bot 1999, 86:1301-15.
  • [36]Massoni J, Doyle JA, Sauquet H. Fossil calibration of Magnoliidae, an ancient lineage of angiosperms. Palaeontol Electron. 2015;18.1.2FC:1-25
  • [37]Bell CD, Soltis DE, Soltis PS: The age and diversification of the angiosperms re-revisited. Am J Bot 2010, 97:1296-303.
  • [38]Friis EM, Crane PR, Pedersen KR: Early flowers and angiosperms evolution. Cambridge University Press, New York; 2011.
  • [39]Gradstein FM, Ogg JG, Schmitz M, Ogg G: The geologic time scale 2012. Elsvier, Amsterdam; 2012.
  • [40]Moore MJ, Bell CD, Soltis PS, Soltis DE: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci U S A 2007, 104:19363-8.
  • [41]Soltis DE, Bell CD, Kim S, Soltis PS: Origin and early evolution of angiosperms. Ann N Y Acad Sci 2008, 1133:3-25.
  • [42]Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, et al.: Three keys to the radiation of angiosperms into freezing environments. Nature 2014, 506:89-92.
  • [43]Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón SA, Lupia R: Ferns diversified in the shadow of angiosperms. Nature 2004, 428:553-7.
  • [44]Su YCF, Saunders RMK: Evolutionary divergence times in the Annonaceae: evidence of a late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea. BMC Evol Biol 2009, 9:153. BioMed Central Full Text
  • [45]Renner SS, Foreman DB, Murray D: Timing transantarctic disjunctions in the Atherospermataceae (Laurales): evidence from coding and noncoding chloroplast sequences. Syst Biol 2000, 49:579-91.
  • [46]Sanderson MJ, Doyle JA: Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am J Bot 2001, 88:1499-516.
  • [47]Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, et al.: Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 2012, 61:289-313.
  • [48]Richardson JE, Chatrou LW, Mols JB, Erkens RHJ, Pirie MD: Historical biogeography of two cosmopolitan families of flowering plants: annonaceae and rhamnaceae. Philos Trans R Soc Lond B Biol Sci 2004, 359:1495-508.
  • [49]Pirie MD, Chatrou LW, Mols JB, Erkens RHJ, Oosterhof J: “Andean-centred” genera in the short-branch clade of annonaceae: testing biogeographical hypotheses using phylogeny reconstruction and molecular dating. J Biogeogr 2006, 33:31-46.
  • [50]Michalak I, Zhang L-B, Renner SS: Trans-Atlantic, trans-Pacific and trans-Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. J Biogeogr 2010, 37:1214-26.
  • [51]Chanderbali AS, van der Werff H, Renner SS: Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard 2001, 88:104-34.
  • [52]Renner SS, Strijk JS, Strasberg D, Thébaud C: Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long-distance dispersal, but not West Gondwana. J Biogeogr 2010, 37:1227-38.
  • [53]Beaulieu JM, Donoghue MJ: Fruit evolution and diversification in campanulid angiosperms. Evolution 2013, 67:3132-44.
  • [54]Koenen EJM, de Vos JM, Atchison GW, Simon MF, Schrire BD, de Souza ER, et al.: Exploring the tempo of species diversification in legumes. South African J Bot 2013, 89:19-30.
  • [55]Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, et al.: Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc Natl Acad Sci U S A 2012, 109:17519-24.
  • [56]Escudero M, Hipp A: Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae). Am J Bot 2013, 100:2403-11.
  • [57]Baker WJ, Couvreur TLP: Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. J Biogeogr 2013, 40:286-98.
  • [58]Jansson R, Dynesius M: The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 2002, 33:741-77.
  • [59]Payne JL, Finnegan S: The effect of geographic range on extinction risk during background and mass extinction. Proc Natl Acad Sci U S A 2007, 104:10506-11.
  • [60]Cardinal S, Danforth BN: Bees diversified in the age of eudicots. Proc R Soc B 2013, 280:20122686.
  • [61]Vamosi JC, Otto SP, Barrett SCH: Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J Evol Biol 2003, 16:1006-18.
  • [62]De Queiroz A: Contingent predictability in evolution: Key traits and diversification. Syst Biol 2002, 51:917-29.
  • [63]Leslie AB, Beaulieu JM, Crane PR, Donoghue MJ: Explaining the distribution of breeding and dispersal syndromes in conifers. Proc R Soc B 2013, 280:20131812.
  • [64]Endress PK: The evolution of floral biology in basal angiosperms. Philos Trans R Soc Lond B Biol Sci 2010, 365:411-21.
  • [65]Endress PK, Doyle JA: Floral phyllotaxis in basal angiosperms: development and evolution. Curr Opin Plant Biol 2007, 10:52-7.
  • [66]Endress PK: Himantandraceae. In Fam genera vasc plants. Edited by Kubitzki K, Rohwer JG, Bittrich V. Springer-Verlag, Berlin Heidelberg New-York; 1993:338-41.
  • [67]Crepet WL, Nixon KC, Gandolfo MA: An extinct calycanthoid taxon, Jerseyanthus calycanthoides, from the Late Cretaceous of New Jersey. Am J Bot 2005, 92:1475-85.
  • [68]Grant V: The pollination of Calycanthus occidentalis. Am J Bot 1950, 37:294-7.
  • [69]Worboys SJ, Jackes BR: Pollination processes in idiospermum australiense (Calycanthaceae), an arborescent basal angiosperm of Australia’s tropical rain forests. Plant Syst Evol 2005, 251:107-17.
  • [70]Kay KM, Sargent RD: The role of animal pollination in plant speciation: integrating ecology, geography, and genetics. Annu Rev Ecol Evol Syst 2009, 40:637-56.
  • [71]Jones LM, Gadek PA, Harrington MG: Population genetic structuring in a rare tropical plant: Idiospermum australiense (Diels) S.T. Blake. Plant Syst Evol 2010, 286:133-9.
  • [72]Goosem S: Update of original Wet tropics of Queensland nomination dossier. Wet Tropics Management Authority Cairns, Queensland, Australia; 2002.
  • [73]Edwards W, Gadek P, Weber E, Worboys S: Idiosyncratic phenomenon of regeneration from cotyledons in the idiot fruit tree, Idiospermum australiense. Austral Ecol 2001, 26:254-8.
  • [74]Endress PK: Calycanthaceae. In The evolution of floral biolology of basal angiosperms. Edited by Kubitzki K. Springer-Verlag, Berlin Heidelberg New-York; 1993:197-200.
  • [75]Smith SA, Donoghue MJ: Rates of molecular evolution are linked to life history in flowering plants. Science 2008, 322:86-9.
  • [76]Heywood VH, Brummitt RK, Culham A, Seberg O: Flowering plant families of the world. Kew Publishing, Richmond; 2007.
  • [77]Doyle JA, Endress PK: Tracing the early evolutionary diversification of the angiosperm flower. In Flowers on the tree of life. Edited by Wanntorp L, Ronse De Craene LP. Cambridge University Press, Cambridge, UK; 2011:88-119.
  • [78]Morlon H, Parsons TL, Plotkin JB: Reconciling molecular phylogenies with the fossil record. Proc Natl Acad Sci U S A 2011, 108:16327-32.
  • [79]Rabosky DL: Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 2014, 9:e89543.
  • [80]Heath TA, Huelsenbeck JP, Stadler T: The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc Natl Acad Sci U S A 2014, 111:2957-66.
  • [81]Silvestro D, Schnitzler J, Liow LH, Antonelli A, Salamin N: Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst Biol 2014, 63:349-67.
  • [82]Friis EM, Pedersen KR, Crane PR: Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr Palaeoclimatol Palaeoecol 2006, 232:251-93.
  • [83]Ogg JG, Hinnov LA: Cretaceous. In Geological time scale 2012. Edited by Gradstein FM, Ogg JG, Schmitz M, Ogg G. Elseiver, Amsterdam; 2012:793-853.
  • [84]Doyle JA: Molecular and fossil evidence on the origin of angiosperms. Annu Rev Earth Planet Sci 2012, 40:301-26.
  • [85]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-73.
  • [86]Nylander JAA: MrModeltest v2. Evolutionary Biology Centre, Uppsala Univ. 2004.
  • [87]Stadler T: On incomplete sampling under birth–death models and connections to the sampling-based coalescent. J Theor Biol 2009, 261:58-66.
  • [88]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4:e88.
  • [89]Heled J, Drummond AJ: Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol 2011, 61:138-49.
  • [90]Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ: Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc R Soc B 2014, 282:20141013.
  • [91]Sanderson MJ: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003, 19:301-2.
  • [92]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proc Gatew Comput Environ Work 2010, 1:1-8.
  • [93]Tracer, version 1.5. [http://tree.bio.ed.ac.uk/software/tracer/].
  • [94]Sanderson MJ: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 2002, 19:101-9.
  • [95]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008, 57:758-71.
  • [96]Paradis E, Claude J, Strimmer K: APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-90.
  • [97]Massoni J, Couvreur TLP, Sauquet H. Chronograms of the BEAST and r8s analyses. Dryad Digital Repository. 2015. http://dx.doi.org/10.5061/dryad.ct231.
  文献评价指标  
  下载次数:23次 浏览次数:9次