期刊论文详细信息
BMC Nephrology
Relationships between serum MCP-1 and subclinical kidney disease: African American-Diabetes Heart Study
Barry I Freedman4  Carl D Langefeld3  Keith A Hruska5  S Carrie Smith6  Jianzhao Xu6  Caresse R Hightower2  J Jeffrey Carr2  Donald W Bowden6  Jasmin Divers3  Thomas C Register1  Mariana Murea4 
[1] Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA;Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA;Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA;Department of Internal Medicine/Nephrology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1053, USA;Division of Pediatric Nephrology, Washington University School of Medicine, St. Louis, MO, 63110, USA;Department of Internal Medicine/Endocrinology/Centers for Diabetes Research and Human Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA
关键词: MCP-1;    GFR;    Diabetes;    Atherosclerotic calcified plaque;    Albuminuria;    African Americans;   
Others  :  1083063
DOI  :  10.1186/1471-2369-13-148
 received in 2012-05-24, accepted in 2012-10-18,  发布年份 2012
PDF
【 摘 要 】

Background

Monocyte chemoattractant protein-1 (MCP-1) plays important roles in kidney disease susceptibility and atherogenesis in experimental models. Relationships between serum MCP-1 concentration and early nephropathy and subclinical cardiovascular disease (CVD) were assessed in African Americans (AAs) with type 2 diabetes (T2D).

Methods

Serum MCP-1 concentration, urine albumin:creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), and atherosclerotic calcified plaque (CP) in the coronary and carotid arteries and infrarenal aorta were measured in 479 unrelated AAs with T2D. Generalized linear models were fitted to test for associations between MCP-1 and urine ACR, eGFR, and CP.

Results

Participants were 57% female, with mean ± SD (median) age 55.6±9.5 (55.0) years, diabetes duration 10.3±8.2 (8.0) years, urine ACR 149.7±566.7 (14.0) mg/g, CKD-EPI eGFR 92.4±23.3 (92.0) ml/min/1.73m2, MCP-1 262.9±239.1 (224.4) pg/ml, coronary artery CP 280.1±633.8 (13.5), carotid artery CP 47.1±132.9 (0), and aorta CP 1616.0±2864.0 (319.0). Adjusting for age, sex, smoking, HbA1c, BMI, and LDL, serum MCP-1 was positively associated with albuminuria (parameter estimate 0.0021, P=0.04) and negatively associated with eGFR (parameter estimate −0.0003, P=0.001). MCP-1 remained associated with eGFR after adjustment for urine ACR. MCP-1 levels did not correlate with the extent of CP in any vascular bed, HbA1c or diabetes duration, but were positively associated with BMI. No interaction between BMI and MCP-1 was detected on nephropathy outcomes.

Conclusions

Serum MCP-1 levels are associated with eGFR and albuminuria in AAs with T2D. MCP-1 was not associated with subclinical CVD in this population. Inflammation appears to play important roles in development and/or progression of kidney disease in AAs.

【 授权许可】

   
2012 Murea et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141224193920611.pdf 167KB PDF download
【 参考文献 】
  • [1]Navarro-Gonzalez JF, Mora-Fernandez C, de Muros FM, Garcia-Perez J: Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011, 7:327-340.
  • [2]Galkina E, Ley K: Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 2009, 27:165-197.
  • [3]McNeill E, Channon KM, Greaves DR: Inflammatory cell recruitment in cardiovascular disease: murine models and potential clinical applications. Clin Sci (Lond) 2010, 118:641-655.
  • [4]Nguyen D, Ping F, Mu W, Hill P, Atkins RC, Chadban SJ: Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton) 2006, 11:226-231.
  • [5]Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, et al.: MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999, 103:773-778.
  • [6]Young BA, Johnson RJ, Alpers CE, Eng E, Gordon K, Floege J, et al.: Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int 1995, 47:935-944.
  • [7]Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ, Tesch GH: Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 2006, 69:73-80.
  • [8]Tesch GH: MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008, 294:F697-F701.
  • [9]Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al.: Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001, 286(4):421-426.
  • [10]Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, et al.: Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation 2005, 112(7):969-975.
  • [11]Freedman BI, Langefeld CD, Lohman KK, Bowden DW, Carr JJ, Rich SS, et al.: Relationship between Albuminuria and Cardiovascular Disease in Type 2 Diabetes. J Am Soc Nephrol 2005, 16:2156-2161.
  • [12]Bild DE, Detrano R, Peterson D, Guerci A, Liu K, Shahar E, et al.: Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2005, 111(10):1313-1320.
  • [13]Freedman BI, Hsu FC, Langefeld CD, Rich SS, Herrington DM, Carr JJ, et al.: The impact of ethnicity and sex on subclinical cardiovascular disease: the Diabetes Heart Study. Diabetologia 2005, 48(12):2511-2518.
  • [14]Hozawa A, Folsom AR, Sharrett AR, Chambless LE: Absolute and attributable risks of cardiovascular disease incidence in relation to optimal and borderline risk factors: comparison of African American with white subjects–Atherosclerosis Risk in Communities Study. Arch Intern Med 2007, 167:573-579.
  • [15]Young BA, Rudser K, Kestenbaum B, Seliger SL, Andress D, Boyko EJ: Racial and ethnic differences in incident myocardial infarction in end-stage renal disease patients: the USRDS. Kidney Int 2006, 69:1691-1698.
  • [16]Karter AJ, Ferrara A, Liu JY, Moffet HH, Ackerson LM, Selby JV: Ethnic disparities in diabetic complications in an insured population. JAMA 2002, 287:2519-2527.
  • [17]Wagenknecht LE, Divers J, Bertoni AG, Langefeld CD, Carr JJ, Bowden DW, et al.: Correlates of coronary artery calcified plaque in blacks and whites with type 2 diabetes. Ann Epidemiol 2011, 21:34-41.
  • [18]Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B, et al.: Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 2009, 4:62-70.
  • [19]Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, et al.: Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol 2008, 19:789-797.
  • [20]Stenvinkel P, Heimburger O, Paultre F, Diczfalusy U, Wang T, Berglund L, et al.: Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 1999, 55:1899-1911.
  • [21]Stenvinkel P, Lindholm B, Heimburger M, Heimburger O: Elevated serum levels of soluble adhesion molecules predict death in pre-dialysis patients: association with malnutrition, inflammation, and cardiovascular disease. Nephrol Dial Transplant 2000, 15:1624-1630.
  • [22]Mourad JJ, Pannier B, Blacher J, Rudnichi A, Benetos A, London GM, et al.: Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension. Kidney Int 2001, 59:1834-1841.
  • [23]Wagenknecht LE, Bowden DW, Carr JJ, Langefeld CD, Freedman BI, Rich SS: Familial aggregation of coronary artery calcium in families with type 2 diabetes. Diabetes 2001, 50:861-866.
  • [24]Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. modification of diet in renal disease study group. Ann Intern Med 1999, 130(6):461-470.
  • [25]Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF III, Feldman HI, et al.: A new equation to estimate glomerular filtration rate. Ann Intern Med 2009, 150:604-612.
  • [26]Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van LF, et al.: Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002, 39:920-929.
  • [27]McCullagh P, Nelder J: Generalized Linear Models. Second edition. Boca Raton, Florida: Chapman and Hall/CRC Publishers; 1989.
  • [28]Hastings C, Mosteller F, Tukey JW, Winsor CP: Low moments for small samples: a comparative study of order statistics. Ann Math Stat 1947, 18:413-426.
  • [29]Box GEP, Cox DR: An analysis of tranformations. J R StatSoc, Series B 1964, 26:211-246.
  • [30]Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K: Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int 2000, 58:684-690.
  • [31]Rovin BH, Doe N, Tan LC: Monocyte chemoattractant protein-1 levels in patients with glomerular disease. Am J Kidney Dis 1996, 27:640-646.
  • [32]Wada T, Yokoyama H, Su SB, Mukaida N, Iwano M, Dohi K, et al.: Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis. Kidney Int 1996, 49:761-767.
  • [33]Yokoyama H, Wada T, Furuichi K, Segawa C, Shimizu M, Kobayashi K, et al.: Urinary levels of chemokines (MCAF/MCP-1, IL-8) reflect distinct disease activities and phases of human IgA nephropathy. J Leukoc Biol 1998, 63:493-499.
  • [34]Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, et al.: Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 2000, 58:1492-1499.
  • [35]Morii T, Fujita H, Narita T, Shimotomai T, Fujishima H, Yoshioka N, et al.: Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complications 2003, 17(1):11-15.
  • [36]Munshi R, Johnson A, Siew ED, Ikizler TA, Ware LB, Wurfel MM, et al.: MCP-1 Gene Activation Marks Acute Kidney Injury. J Am Soc Nephrol 2011, 22:165-175.
  • [37]Ruggenenti P, Remuzzi G: Nephropathy of type 1 and type 2 diabetes: diverse pathophysiology, same treatment? Nephrol Dial Transplant 2000, 15:1900-1902.
  • [38]Paalani M, Lee JW, Haddad E, Tonstad S: Determinants of inflammatory markers in a bi-ethnic population. Ethn Dis 2011, 21:142-149.
  • [39]Feairheller DL, Park JY, Sturgeon KM, Williamson ST, Diaz KM, Veerabhadrappa P, et al.: Racial differences in oxidative stress and inflammation: in vitro and in vivo. Clin Transl Sci 2011, 4:32-37.
  • [40]Gonzalez-Quesada C, Frangogiannis NG: Monocyte chemoattractant protein-1/CCL2 as a biomarker in acute coronary syndromes. Curr Atheroscler Rep 2009, 11:131-138.
  • [41]Deo R, Khera A, McGuire DK, Murphy SA, Meo Neto JP, Morrow DA, et al.: Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J Am Coll Cardiol 2004, 44:1812-1818.
  • [42]Wong CK, Ho AW, Tong PC, Yeung CY, Kong AP, Lun SW, et al.: Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin Exp Immunol 2007, 149:123-131.
  • [43]Sartipy P, Loskutoff DJ: Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 2003, 100:7265-7270.
  • [44]Sell H, Eckel J: Monocyte chemotactic protein-1 and its role in insulin resistance. Curr Opin Lipidol 2007, 18:258-262.
  • [45]Matsumori A, Furukawa Y, Hashimoto T, Yoshida A, Ono K, Shioi T, et al.: Plasma levels of the monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 are elevated in patients with acute myocardial infarction. J Mol Cell Cardiol 1997, 29:419-423.
  • [46]de Lemos JA, Morrow DA, Sabatine MS, Murphy SA, Gibson CM, Antman EM, et al.: Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 2003, 107:690-695.
  • [47]Register TC, Cann JA, Kaplan JR, Williams JK, Adams MR, Morgan TM, et al.: Effects of soy isoflavones and conjugated equine estrogens on inflammatory markers in atherosclerotic, ovariectomized monkeys. J Clin Endocrinol Metab 2005, 90:1734-1740.
  • [48]Xia M, Sui Z: Recent developments in CCR2 antagonists. Expert Opin Ther Pat 2009, 19:295-303.
  • [49]Kang YS, Lee MH, Song HK, Ko GJ, Kwon OS, Lim TK, et al.: CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int 2010, 78:883-894.
  文献评价指标  
  下载次数:2次 浏览次数:11次